Ledda 3 месяцев назад
Сommit
f21f36ce02
33 измененных файлов: 9082 добавлений и 0 удалений
  1. +5
    -0
      .gitignore
  2. +450
    -0
      2024_MA_Platteau.aux
  3. +676
    -0
      2024_MA_Platteau.bbl
  4. +73
    -0
      2024_MA_Platteau.blg
  5. +14
    -0
      2024_MA_Platteau.lof
  6. +1796
    -0
      2024_MA_Platteau.log
  7. +12
    -0
      2024_MA_Platteau.lot
  8. +0
    -0
      2024_MA_Platteau.out
  9. +75
    -0
      2024_MA_Platteau.tex
  10. +74
    -0
      2024_MA_Platteau.toc
  11. +983
    -0
      Bibliography.bib
  12. +45
    -0
      Content/Abbreviations.tex
  13. +8
    -0
      Content/Abstract.tex
  14. +4
    -0
      Content/Acknowledgements.tex
  15. +21
    -0
      Content/Appendix.tex
  16. +46
    -0
      Content/Introduction.tex
  17. +18
    -0
      Content/MainSection.tex
  18. +78
    -0
      Content/Method.tex
  19. +29
    -0
      Content/Notation.tex
  20. +34
    -0
      Content/Results and Discussion.tex
  21. +10
    -0
      Content/StatutoryDeclaration.tex
  22. +10
    -0
      Content/SummaryAndOutlook.tex
  23. +409
    -0
      Content/Theoretical Background.tex
  24. +36
    -0
      Content/TitlePage_LES.aux
  25. +56
    -0
      Content/TitlePage_LES.tex
  26. +64
    -0
      Content/TitlePage_ZAE.tex
  27. Двоичные данные
      Figures/MainSection/Sumatra_Install_1.JPG
  28. Двоичные данные
      Figures/MainSection/Sumatra_Install_2.JPG
  29. Двоичные данные
      Figures/MainSection/modell.jpg
  30. +131
    -0
      Praeambel.tex
  31. +1952
    -0
      dinatles.bst
  32. +1952
    -0
      english_dinatles.bst
  33. +21
    -0
      texput.log

+ 5
- 0
.gitignore Просмотреть файл

@@ -0,0 +1,5 @@
*.pdf
*.pdfsync
*.png
*.synctex.gz
.DS_Store

+ 450
- 0
2024_MA_Platteau.aux Просмотреть файл

@@ -0,0 +1,450 @@
\relax
\providecommand\hyper@newdestlabel[2]{}
\providecommand*\new@tpo@label[2]{}
\providecommand\babel@aux[2]{}
\@nameuse{bbl@beforestart}
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldcontentsline\contentsline
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\contentsline\oldcontentsline
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\providecommand\BKM@entry[2]{}
\@input{Content/TitlePage_LES.aux}
\babel@aux{english}{}
\babel@aux{english}{}
\newlabel{cap:StatutoryDeclaration}{{}{I}{Statutory Declaration}{chapter*.1}{}}
\newlabel{cap:Abstract}{{}{III}{Abstract}{chapter*.2}{}}
\BKM@entry{id=1,open,dest={636861703A746F632E30},srcline={29}}{5C3337365C3337375C303030435C3030306F5C3030306E5C303030745C303030655C3030306E5C303030745C30303073}
\BKM@entry{id=2,open,dest={636861707465722A2E34},srcline={33}}{5C3337365C3337375C3030304C5C303030695C303030735C303030745C3030305C3034305C3030306F5C303030665C3030305C3034305C303030465C303030695C303030675C303030755C303030725C303030655C30303073}
\@writefile{toc}{\contentsline {chapter}{\nonumberline List of Figures}{VII}{chapter*.4}\protected@file@percent }
\BKM@entry{id=3,open,dest={636861707465722A2E35},srcline={36}}{5C3337365C3337375C3030304C5C303030695C303030735C303030745C3030305C3034305C3030306F5C303030665C3030305C3034305C303030545C303030615C303030625C3030306C5C303030655C30303073}
\@writefile{toc}{\contentsline {chapter}{\nonumberline List of Tables}{IX}{chapter*.5}\protected@file@percent }
\BKM@entry{id=4,open,dest={636861707465722A2E36},srcline={1}}{5C3337365C3337375C303030415C303030625C303030625C303030725C303030655C303030765C303030695C303030615C303030745C303030695C3030306F5C3030306E5C30303073}
\@writefile{toc}{\contentsline {chapter}{Abbreviations}{XI}{chapter*.6}\protected@file@percent }
\BKM@entry{id=5,open,dest={636861707465722A2E37},srcline={1}}{5C3337365C3337375C3030304E5C3030306F5C303030745C303030615C303030745C303030695C3030306F5C3030306E}
\@writefile{toc}{\contentsline {chapter}{Notation}{XIII}{chapter*.7}\protected@file@percent }
\BKM@entry{id=6,open,dest={636861707465722E38},srcline={1}}{5C3337365C3337375C303030495C3030306E5C303030745C303030725C3030306F5C303030645C303030755C303030635C303030745C303030695C3030306F5C3030306E}
\BKM@entry{id=7,open,dest={73656374696F6E2E39},srcline={4}}{5C3337365C3337375C3030304D5C3030306F5C303030745C303030695C303030765C303030615C303030745C303030695C3030306F5C3030306E}
\citation{01_ipcc_sr15_2018}
\citation{01_xu_ramanathan_2017}
\citation{01_E_klimaschutzgesetz}
\citation{01_umweltbundesamt_treibhausgas_eu}
\citation{01_ipcc_ar6_wg1_2021}
\citation{01_umweltbundesamt_verkehr_emissionen}
\citation{01_destatis_co2_strassenverkehr}
\citation{01_un_climatechange_causes_2023}
\citation{01_wilberforce_advances_2016}
\citation{01_wilberforce_advances_2016}
\citation{01_wilberforce_developments_2017}
\citation{wang_preparation_2018}
\citation{wang_preparation_2018}
\citation{elferjani_coupling_2021}
\@writefile{toc}{\contentsline {chapter}{\numberline {1}Introduction}{1}{chapter.8}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{cap:Introduction}{{1}{1}{Introduction}{chapter.8}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.1}Motivation}{1}{section.9}\protected@file@percent }
\BKM@entry{id=8,open,dest={73656374696F6E2E3130},srcline={28}}{5C3337365C3337375C303030505C303030725C3030306F5C303030625C3030306C5C303030655C3030306D5C3030305C3034305C303030535C303030745C303030615C303030745C303030655C3030306D5C303030655C3030306E5C30303074}
\citation{wang_preparation_2018}
\BKM@entry{id=9,open,dest={73656374696F6E2E3135},srcline={45}}{5C3337365C3337375C3030304F5C303030755C303030745C3030306C5C303030695C3030306E5C303030655C3030305C3034305C3030306F5C303030665C3030305C3034305C303030745C303030685C303030655C3030305C3034305C303030545C303030685C303030655C303030735C303030695C30303073}
\@writefile{toc}{\contentsline {section}{\numberline {1.2}Problem Statement}{2}{section.10}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {1.3}Outline of the Thesis}{2}{section.15}\protected@file@percent }
\BKM@entry{id=10,open,dest={636861707465722E3136},srcline={1}}{5C3337365C3337375C303030545C303030685C303030655C3030306F5C303030725C303030655C303030745C303030695C303030635C303030615C3030306C5C3030305C3034305C303030425C303030615C303030635C3030306B5C303030675C303030725C3030306F5C303030755C3030306E5C30303064}
\BKM@entry{id=11,open,dest={73656374696F6E2E3137},srcline={8}}{5C3337365C3337375C303030465C303030755C3030306E5C303030645C303030615C3030306D5C303030655C3030306E5C303030745C303030615C3030306C5C303030735C3030305C3034305C3030306F5C303030665C3030305C3034305C303030745C303030685C303030655C3030305C3034305C303030465C303030755C303030655C3030306C5C3030305C3034305C303030435C303030655C3030306C5C3030306C}
\citation{01_wilberforce_advances_2016,02_baroutaji2015materials}
\citation{01_wilberforce_advances_2016,02_lucia2014overview}
\citation{02_wang2020fundamentals}
\citation{02_Abderezzak2018}
\citation{SOFC_hauser2021effects}
\citation{SOFC_lin_analysis_2024}
\citation{SOFC_Haberman2004}
\@writefile{toc}{\contentsline {chapter}{\numberline {2}Theoretical Background}{3}{chapter.16}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{cap: Theorie}{{2}{3}{Theoretical Background}{chapter.16}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.1}Fundamentals of the Fuel Cell}{3}{section.17}\protected@file@percent }
\newlabel{sec: Revox}{{2.1}{3}{Fundamentals of the Fuel Cell}{section.17}{}}
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Solid Oxide Fuel Cells (SOFCs)}{3}{subsubsection*.19}\protected@file@percent }
\citation{SOFC_lin_analysis_2024,SOFC_WGS_Buttler2016}
\citation{02_lucia2014overview,02_wang2020fundamentals}
\citation{MCFScontreras2021molten}
\citation{MCFS_cui2021review}
\citation{wang_preparation_2018}
\citation{02_wang2020fundamentals}
\citation{02_Abderezzak2018,02_wang2020fundamentals}
\citation{AFC_mclean2002assessment}
\citation{AFC_mclean2002assessment,AFC_AlSaleh1994_CO2,AFC_AlSaleh1994_Ni}
\citation{02_lucia2014overview}
\citation{02_wang2020fundamentals}
\citation{PEM_Atuomotive_arrigoni2022greenhouse}
\newlabel{eq:Steam reforming}{{2.1}{4}{Solid Oxide Fuel Cells (SOFCs)}{equation.20}{}}
\newlabel{eq:WGS}{{2.2}{4}{Solid Oxide Fuel Cells (SOFCs)}{equation.21}{}}
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Molten Carbonate Fuel Cells (MCFCs)}{4}{subsubsection*.23}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Alkaline Fuel Cells (AFCs)}{4}{subsubsection*.25}\protected@file@percent }
\newlabel{eq:AFC_Poisoning}{{2.3}{4}{Alkaline Fuel Cells (AFCs)}{equation.26}{}}
\citation{01_wilberforce_developments_2017}
\BKM@entry{id=12,open,dest={73656374696F6E2E3239},srcline={66}}{5C3337365C3337375C303030455C3030306C5C303030655C303030635C303030745C303030725C3030306F5C303030635C303030685C303030655C3030306D5C303030695C303030635C303030615C3030306C5C3030305C3034305C303030465C303030755C3030306E5C303030645C303030615C3030306D5C303030655C3030306E5C303030745C303030615C3030306C5C30303073}
\citation{Fundamentals_o2016fuel}
\citation{Fundamentals_o2016fuel}
\citation{Fundamentals_scherer2012fuel}
\BKM@entry{id=13,open,dest={73756273656374696F6E2E3333},srcline={79}}{5C3337365C3337375C303030545C303030685C303030655C303030725C3030306D5C3030306F5C303030645C303030795C3030306E5C303030615C3030306D5C303030695C303030635C303030735C3030305C3034305C3030306F5C303030665C3030305C3034305C303030745C303030685C303030655C3030305C3034305C303030435C303030655C3030306C5C3030306C}
\citation{Fund_barbir2008fuel}
\citation{Fund_barbir2008fuel}
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Polymer Electrolyte Membrane Fuel Cells (PEMFCs)}{5}{subsubsection*.28}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {2.2}Electrochemical Fundamentals}{5}{section.29}\protected@file@percent }
\newlabel{eq:PEM}{{2.6}{5}{Electrochemical Fundamentals}{equation.32}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.1}Thermodynamics of the Cell}{5}{subsection.33}\protected@file@percent }
\newlabel{eq:Enthalpy}{{2.7}{5}{Thermodynamics of the Cell}{equation.34}{}}
\citation{Fundamentals_scherer2012fuel}
\citation{Fundamentals_scherer2012fuel,F_omran2021mathematical}
\citation{Fundamentals_o2016fuel,Nernst_sahu2014performance}
\citation{Nernst_mardle2021examination}
\citation{Fundamentals_o2016fuel}
\citation{Fundamentals_o2016fuel}
\newlabel{eq:Gibbs}{{2.8}{6}{Thermodynamics of the Cell}{equation.35}{}}
\newlabel{eq:E}{{2.9}{6}{Thermodynamics of the Cell}{equation.36}{}}
\newlabel{eq:nernst}{{2.10}{6}{Thermodynamics of the Cell}{equation.37}{}}
\newlabel{eq:mu}{{2.11}{6}{Thermodynamics of the Cell}{equation.38}{}}
\newlabel{eq:chem1}{{2.12}{6}{Thermodynamics of the Cell}{equation.39}{}}
\newlabel{eq:gibbs_2}{{2.13}{6}{Thermodynamics of the Cell}{equation.40}{}}
\BKM@entry{id=14,open,dest={73656374696F6E2E3431},srcline={136}}{5C3337365C3337375C303030505C303030455C3030304D5C303030465C30303043}
\citation{PEM_Atuomotive_arrigoni2022greenhouse}
\BKM@entry{id=15,open,dest={73756273656374696F6E2E3432},srcline={142}}{5C3337365C3337375C303030575C303030615C303030795C3030305C3034305C3030306F5C303030665C3030305C3034305C303030465C303030755C3030306E5C303030635C303030745C303030695C3030306F5C3030306E5C3030305C3034305C303030505C303030455C3030304D5C303030465C303030435C30303073}
\citation{PEMSchem_xu2020towards}
\citation{PEMSchem_xu2020towards}
\@writefile{toc}{\contentsline {section}{\numberline {2.3}PEMFC}{7}{section.41}\protected@file@percent }
\newlabel{sec: PEMFC}{{2.3}{7}{PEMFC}{section.41}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.1}Way of Function PEMFCs}{7}{subsection.42}\protected@file@percent }
\newlabel{subsec:2_wayoffunct}{{2.3.1}{7}{Way of Function PEMFCs}{subsection.42}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces Components of a PEMFC cell and its position in a fuel cell stack. Retrieved from Xu et al. page 816 [33].\relax }}{7}{figure.caption.43}\protected@file@percent }
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
\newlabel{fig:PEMFC}{{2.1}{7}{Components of a PEMFC cell and its position in a fuel cell stack. Retrieved from Xu et al. page 816 [33].\relax }{figure.caption.43}{}}
\citation{PEM_baroutaji2015materials}
\citation{doe_pemfc_targets}
\citation{doe_pemfc_targets}
\citation{antunes2010}
\citation{PEM_baroutaji2015materials}
\citation{SSweight_li2005review}
\citation{Automotive_leng2020}
\citation{toyota_technical_review_2021}
\citation{bmw_hydrogen_2024}
\citation{eom2012}
\citation{sulek2011}
\citation{papadias2015degradation,feng2011}
\citation{PEMSchem_xu2020towards}
\citation{MEA_lim2021comparison}
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Bipolar Plate (BP)}{8}{subsubsection*.45}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Membrane Electrode Assembly (MEA)}{8}{subsubsection*.47}\protected@file@percent }
\citation{MEA_lapicque2012,MEA_bhosale2020}
\citation{MEA_bhosale2020}
\citation{PEM_MEA_parekh2022recent}
\citation{MEA_lim2021comparison}
\citation{Pt_liew2014}
\citation{thiele2024realistic}
\citation{PEMSchem_xu2020towards}
\citation{02_wang2020fundamentals}
\citation{02_wang2020fundamentals,GDL_zamel2011}
\citation{GDL_zamel2011}
\citation{ijaodola2019}
\citation{majlan2018}
\citation{02_wang2020fundamentals}
\citation{PEM_baroutaji2015materials}
\citation{PEM_MEA_parekh2022recent}
\citation{CT_malek2011}
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Gas Diffusion Layer (GDL)}{9}{subsubsection*.49}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Catalyst Layer (CT)}{9}{subsubsection*.51}\protected@file@percent }
\citation{hnat2019}
\citation{MEA_lim2021comparison}
\citation{PEM_MEA_parekh2022recent}
\citation{ink_zamel2016catalyst}
\citation{02_wang2020fundamentals}
\citation{ghassemzadeh2010chemical}
\citation{PEM_MEA_parekh2022recent}
\citation{okonkwo2021nafion}
\citation{zaidi2009polymer}
\citation{teranishi2006}
\citation{ren2020degradation}
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Proton Exchange Membrane (PEM)}{10}{subsubsection*.53}\protected@file@percent }
\citation{elferjani_coupling_2021}
\BKM@entry{id=16,open,dest={73756273656374696F6E2E3536},srcline={232}}{5C3337365C3337375C303030445C303030655C303030705C303030615C303030725C303030745C3030306D5C303030655C3030306E5C303030745C3030305C3034305C3030306F5C303030665C3030305C3034305C303030455C3030306E5C303030655C303030725C303030675C303030795C3030305C3034305C303030545C303030615C303030725C303030675C303030655C303030745C30303073}
\citation{doe_pemfc_targets}
\citation{trabia2016}
\citation{PEM_MEA_parekh2022recent}
\BKM@entry{id=17,open,dest={73756273656374696F6E2E3537},srcline={240}}{5C3337365C3337375C3030304F5C303030765C303030655C303030725C303030705C3030306F5C303030745C303030655C3030306E5C303030745C303030695C303030615C3030306C5C303030735C3030305C3034305C3030306F5C303030665C3030305C3034305C303030745C303030685C303030655C3030305C3034305C303030505C303030455C3030304D5C303030465C30303043}
\citation{Loss_mardle2021examination}
\citation{Loss_jung2010dynamic}
\citation{Loss_mazzeo2024assessing}
\citation{02_lucia2014overview}
\@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces Chemical structure of PFSA also called Nafion. Retrieved from Chen et al., page 1436 (1) [59]\relax }}{11}{figure.caption.54}\protected@file@percent }
\newlabel{fig:Nafion}{{2.2}{11}{Chemical structure of PFSA also called Nafion. Retrieved from Chen et al., page 1436 (1) [59]\relax }{figure.caption.54}{}}
\newlabel{eq:h2o2}{{2.14}{11}{Proton Exchange Membrane (PEM)}{equation.55}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.2}Department of Energy Targets}{11}{subsection.56}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.3}Overpotentials of the PEMFC}{11}{subsection.57}\protected@file@percent }
\newlabel{subsec:losses}{{2.3.3}{11}{Overpotentials of the PEMFC}{subsection.57}{}}
\citation{Loss_li2022new}
\citation{ren2020degradation}
\citation{ren2020degradation,jouin2016}
\citation{Loss_mazzeo2024assessing}
\@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces Polarization curve of a fuel cell including the different losses. Retrieved from Jung et al., page 741 (4) [64].\relax }}{12}{figure.caption.58}\protected@file@percent }
\newlabel{fig:losses}{{2.3}{12}{Polarization curve of a fuel cell including the different losses. Retrieved from Jung et al., page 741 (4) [64].\relax }{figure.caption.58}{}}
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Activation Polarization}{12}{subsubsection*.60}\protected@file@percent }
\newlabel{eq:Loss_N}{{2.15}{12}{Activation Polarization}{equation.61}{}}
\citation{Loss_li2022new}
\citation{Loss_mazzeo2024assessing}
\citation{springer1991}
\citation{ren2020degradation}
\citation{ren2020degradation}
\citation{Loss_li2022new}
\citation{ren2020degradation}
\citation{liu2024study}
\BKM@entry{id=18,open,dest={73756273656374696F6E2E3639},srcline={302}}{5C3337365C3337375C303030435C303030685C303030615C303030725C303030615C303030635C303030745C303030655C303030725C303030695C3030307A5C303030615C303030745C303030695C3030306F5C3030306E5C3030305C3034305C3030306F5C303030665C3030305C3034305C303030505C303030455C3030304D5C303030465C30303043}
\citation{mohsin2020electrochemical}
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Ohmic Polarization}{13}{subsubsection*.64}\protected@file@percent }
\newlabel{eq:Loss_ohm}{{2.17}{13}{Ohmic Polarization}{equation.65}{}}
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Concentration Polarization}{13}{subsubsection*.67}\protected@file@percent }
\newlabel{eq:Loss_con}{{2.18}{13}{Concentration Polarization}{equation.68}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.4}Characterization of PEMFC}{13}{subsection.69}\protected@file@percent }
\citation{Pol_thiele2024realistic}
\citation{mohsin2020electrochemical}
\BKM@entry{id=19,open,dest={73656374696F6E2E3731},srcline={317}}{5C3337365C3337375C303030445C303030655C303030675C303030725C303030615C303030645C303030615C303030745C303030695C3030306F5C3030306E5C3030305C3034305C3030304D5C303030655C303030635C303030685C303030615C3030306E5C303030695C303030735C3030306D5C30303073}
\citation{pei2008}
\citation{Pol_thiele2024realistic}
\citation{Pol_thiele2024realistic}
\@writefile{lof}{\contentsline {figure}{\numberline {2.4}{\ignorespaces Example of a polarization curve of a PEMFC after different numbers of voltage cycles (VC) . Retrieved from Mohsin et al., page 24096 (4) [69].\relax }}{14}{figure.caption.70}\protected@file@percent }
\newlabel{fig:PolCurve}{{2.4}{14}{Example of a polarization curve of a PEMFC after different numbers of voltage cycles (VC) . Retrieved from Mohsin et al., page 24096 (4) [69].\relax }{figure.caption.70}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.4}Degradation Mechanisms}{14}{section.71}\protected@file@percent }
\newlabel{sec:Degradation}{{2.4}{14}{Degradation Mechanisms}{section.71}{}}
\BKM@entry{id=20,open,dest={73756273656374696F6E2E3732},srcline={325}}{5C3337365C3337375C303030505C3030306C5C303030615C303030745C303030695C3030306E5C303030755C3030306D5C3030305C3034305C303030435C303030615C303030745C303030615C3030306C5C303030795C303030735C303030745C3030305C3034305C303030445C303030695C303030735C303030735C3030306F5C3030306C5C303030755C303030745C303030695C3030306F5C3030306E5C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030415C303030675C303030675C3030306C5C3030306F5C3030306D5C303030655C303030725C303030615C303030745C303030695C3030306F5C3030306E}
\citation{cherevko2015}
\citation{luo2010}
\citation{wallnofer2024main}
\citation{takei2016}
\citation{takei2016}
\citation{pavlivsivc2018platinum,okonkwo2021platinum}
\citation{okonkwo2021platinum}
\citation{okonkwo2021platinum}
\citation{okonkwo2021platinum}
\citation{okonkwo2021platinum}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}Platinum Catalyst Dissolution and Agglomeration}{15}{subsection.72}\protected@file@percent }
\newlabel{subsec: Pt}{{2.4.1}{15}{Platinum Catalyst Dissolution and Agglomeration}{subsection.72}{}}
\BKM@entry{id=21,open,dest={73756273656374696F6E2E3736},srcline={353}}{5C3337365C3337375C303030455C3030306C5C303030655C303030635C303030745C303030725C3030306F5C303030635C303030685C303030655C3030306D5C303030695C303030635C303030615C3030306C5C3030305C3034305C303030435C303030615C303030725C303030625C3030306F5C3030306E5C3030305C3034305C303030435C3030306F5C303030725C303030725C3030306F5C303030735C303030695C3030306F5C3030306E}
\citation{park2016effects}
\citation{zhao2021carbon}
\citation{zhao2021carbon,lin2015investigating}
\citation{wallnofer2024main}
\citation{pei2008}
\citation{Pol_thiele2024realistic}
\citation{Pol_thiele2024realistic}
\citation{ren2020degradation}
\citation{wallnofer2024main}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.2}Electrochemical Carbon Corrosion}{16}{subsection.76}\protected@file@percent }
\newlabel{subsec: Carbon corrosion}{{2.4.2}{16}{Electrochemical Carbon Corrosion}{subsection.76}{}}
\BKM@entry{id=22,open,dest={73756273656374696F6E2E3830},srcline={377}}{5C3337365C3337375C3030304D5C303030655C3030306D5C303030625C303030725C303030615C3030306E5C303030655C3030305C3034305C303030445C303030655C303030675C303030725C303030615C303030645C303030615C303030745C303030695C3030306F5C3030306E}
\citation{ohma2008}
\BKM@entry{id=23,open,dest={73756273656374696F6E2E3831},srcline={386}}{5C3337365C3337375C303030435C3030306F5C303030725C303030725C3030306F5C303030735C303030695C3030306F5C3030306E}
\citation{matsutani2010}
\citation{Corr_ren2022corrosion}
\citation{Corr_kumagai2012high}
\citation{Corr_mele2010localised}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.3}Membrane Degradation}{17}{subsection.80}\protected@file@percent }
\newlabel{subsec:membrane degradation}{{2.4.3}{17}{Membrane Degradation}{subsection.80}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.4}Corrosion}{17}{subsection.81}\protected@file@percent }
\newlabel{subsec: BP Corrosion}{{2.4.4}{17}{Corrosion}{subsection.81}{}}
\BKM@entry{id=24,open,dest={636861707465722E3832},srcline={1}}{5C3337365C3337375C3030304D5C303030655C303030745C303030685C3030306F5C30303064}
\BKM@entry{id=25,open,dest={73656374696F6E2E3833},srcline={6}}{5C3337365C3337375C3030304D5C3030306F5C303030645C303030655C3030306C5C303030615C303030745C303030695C3030306F5C3030306E5C3030305C3034305C3030306F5C303030665C3030305C3034305C303030435C3030306F5C303030725C303030725C3030306F5C303030735C303030695C3030306F5C3030306E5C3030305C3034305C3030304D5C303030655C303030635C303030685C303030615C3030306E5C303030695C303030735C3030306D}
\BKM@entry{id=26,open,dest={73656374696F6E2E3834},srcline={9}}{5C3337365C3337375C3030304D5C303030615C303030745C303030655C303030725C303030695C303030615C3030306C5C3030305C3034305C303030435C303030685C303030615C303030725C303030615C303030635C303030745C303030655C303030725C303030695C3030307A5C303030615C303030745C303030695C3030306F5C3030306E5C3030305C3034305C3030306F5C303030665C3030305C3034305C303030535C303030755C303030625C303030735C303030745C303030725C303030615C303030745C30303065}
\BKM@entry{id=27,open,dest={73756273656374696F6E2E3835},srcline={11}}{5C3337365C3337375C303030505C3030306F5C303030745C303030655C3030306E5C303030745C303030695C3030306F5C303030735C303030745C303030615C303030745C303030695C303030635C3030305C3034305C3030304D5C303030655C303030615C303030735C303030755C303030725C303030655C3030306D5C303030655C3030306E5C303030745C30303073}
\BKM@entry{id=28,open,dest={73756273656374696F6E2E3836},srcline={13}}{5C3337365C3337375C303030505C3030306F5C303030745C303030655C3030306E5C303030745C303030695C3030306F5C303030645C303030795C3030306E5C303030615C3030306D5C303030695C303030635C3030305C3034305C3030304D5C303030655C303030615C303030735C303030755C303030725C303030655C3030306D5C303030655C3030306E5C303030745C30303073}
\BKM@entry{id=29,open,dest={73656374696F6E2E3837},srcline={15}}{5C3337365C3337375C303030455C303030785C303030705C303030655C303030725C303030695C3030306D5C303030655C3030306E5C303030745C303030615C3030306C5C3030305C3034305C303030535C303030655C303030745C303030755C303030705C3030305C3034305C3030306F5C303030665C3030305C3034305C303030455C3030306E5C303030645C303030755C303030725C303030615C3030306E5C303030635C303030655C3030305C3034305C303030525C303030755C3030306E}
\BKM@entry{id=30,open,dest={73756273656374696F6E2E3838},srcline={18}}{5C3337365C3337375C303030545C303030655C303030735C303030745C303030625C303030655C3030306E5C303030635C30303068}
\BKM@entry{id=31,open,dest={73756273656374696F6E2E3839},srcline={20}}{5C3337365C3337375C303030435C303030685C303030615C303030725C303030615C303030635C303030745C303030655C303030725C303030695C3030307A5C303030615C303030745C303030695C3030306F5C3030306E5C3030305C3034305C3030306F5C303030665C3030305C3034305C303030435C303030655C3030306C5C3030306C5C30303073}
\BKM@entry{id=32,open,dest={73756273656374696F6E2E3930},srcline={26}}{5C3337365C3337375C303030705C303030485C3030305C3034305C3030304D5C303030655C303030615C303030735C303030755C303030725C303030655C3030306D5C303030655C3030306E5C30303074}
\BKM@entry{id=33,open,dest={73756273656374696F6E2E3932},srcline={48}}{5C3337365C3337375C303030445C303030655C303030765C303030655C3030306C5C3030306F5C303030705C3030306D5C303030655C3030306E5C303030745C3030305C3034305C3030306F5C303030665C3030305C3034305C303030455C3030306E5C303030645C303030755C303030725C303030615C3030306E5C303030635C303030655C3030305C3034305C303030525C303030755C3030306E}
\BKM@entry{id=34,open,dest={73756273656374696F6E2E3933},srcline={50}}{5C3337365C3337375C303030435C303030685C303030615C303030725C303030615C303030635C303030745C303030655C303030725C303030695C3030307A5C303030615C303030745C303030695C3030306F5C3030306E5C3030305C3034305C3030306F5C303030665C3030305C3034305C303030745C303030685C303030655C3030305C3034305C303030455C3030306E5C303030645C303030755C303030725C303030615C3030306E5C303030635C303030655C3030305C3034305C303030525C303030755C3030306E}
\BKM@entry{id=35,open,dest={73656374696F6E2E3935},srcline={70}}{5C3337365C3337375C303030455C303030785C3030302D5C303030535C303030695C303030745C303030755C3030305C3034305C303030615C3030306E5C303030615C3030306C5C303030795C303030735C303030695C30303073}
\BKM@entry{id=36,open,dest={73756273656374696F6E2E3936},srcline={72}}{5C3337365C3337375C3030304C5C303030615C303030735C303030655C303030725C3030305C3034305C303030495C3030306E5C303030645C303030755C303030635C303030655C303030645C3030305C3034305C303030425C303030725C303030655C303030615C3030306B5C303030645C3030306F5C303030775C3030306E5C3030305C3034305C303030535C303030705C303030655C303030635C303030745C303030725C3030306F5C303030735C303030635C3030306F5C303030705C303030795C3030305C3035305C3030304C5C303030495C303030425C303030535C3030305C303531}
\BKM@entry{id=37,open,dest={73756273656374696F6E2E3937},srcline={74}}{5C3337365C3337375C303030455C3030306E5C303030655C303030725C303030675C303030795C3030305C3034305C303030445C303030695C303030735C303030705C303030655C303030725C303030735C303030695C303030765C303030655C3030305C3034305C303030585C3030302D5C303030525C303030615C303030795C3030305C3034305C303030535C303030705C303030655C303030635C303030745C303030725C3030306F5C303030735C303030635C3030306F5C303030705C303030795C3030305C3034305C3030305C3035305C303030455C303030445C303030585C3030305C303531}
\BKM@entry{id=38,open,dest={73756273656374696F6E2E3938},srcline={76}}{5C3337365C3337375C303030535C303030635C303030615C3030306E5C3030306E5C303030695C3030306E5C303030675C3030305C3034305C303030455C3030306C5C303030655C303030635C303030745C303030725C3030306F5C3030306E5C303030655C3030305C3034305C3030304D5C303030695C303030635C303030725C3030306F5C303030735C303030635C3030306F5C303030705C303030655C3030305C3034305C3030305C3035305C303030535C303030455C3030304D5C3030305C303531}
\BKM@entry{id=39,open,dest={73756273656374696F6E2E3939},srcline={78}}{5C3337365C3337375C303030495C3030306E5C303030645C303030755C303030635C303030745C303030695C303030765C303030655C3030306C5C303030795C3030305C3034305C303030435C3030306F5C303030755C303030705C3030306C5C303030655C303030645C3030305C3034305C303030505C3030306C5C303030615C303030735C3030306D5C303030615C3030305C3034305C303030535C303030705C303030655C303030635C303030745C303030725C3030306F5C303030735C303030635C3030306F5C303030705C303030795C3030305C3034305C3030305C3035305C303030495C303030435C303030505C3030305C303531}
\@writefile{toc}{\contentsline {chapter}{\numberline {3}Method}{19}{chapter.82}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:Methode}{{3}{19}{Method}{chapter.82}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.1}Modelation of Corrosion Mechanism}{19}{section.83}\protected@file@percent }
\newlabel{sec:Anlagenbeschreibung}{{3.1}{19}{Modelation of Corrosion Mechanism}{section.83}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.2}Material Characterization of Substrate}{19}{section.84}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.1}Potentiostatic Measurements}{19}{subsection.85}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.2}Potentiodynamic Measurements}{19}{subsection.86}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {3.3}Experimental Setup of Endurance Run}{19}{section.87}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.1}Testbench}{19}{subsection.88}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.2}Characterization of Cells}{19}{subsection.89}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.3}pH Measurement}{19}{subsection.90}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {3.1}{\ignorespaces Temperatures of the cell\relax }}{19}{table.caption.91}\protected@file@percent }
\newlabel{tab:3_pH_T}{{3.1}{19}{Temperatures of the cell\relax }{table.caption.91}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.4}Development of Endurance Run}{19}{subsection.92}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.5}Characterization of the Endurance Run}{19}{subsection.93}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {3.2}{\ignorespaces Temperatures of the cell\relax }}{19}{table.caption.94}\protected@file@percent }
\newlabel{tab:3_ER}{{3.2}{19}{Temperatures of the cell\relax }{table.caption.94}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.4}Ex-Situ analysis}{20}{section.95}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.4.1}Laser Induced Breakdown Spectroscopy(LIBS)}{20}{subsection.96}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.4.2}Energy Dispersive X-Ray Spectroscopy (EDX)}{20}{subsection.97}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.4.3}Scanning Electrone Microscope (SEM)}{20}{subsection.98}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.4.4}Inductively Coupled Plasma Spectroscopy (ICP)}{20}{subsection.99}\protected@file@percent }
\BKM@entry{id=40,open,dest={636861707465722E313030},srcline={1}}{5C3337365C3337375C303030525C303030655C303030735C303030755C3030306C5C303030745C303030735C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030445C303030695C303030735C303030635C303030755C303030735C303030735C303030695C3030306F5C3030306E}
\BKM@entry{id=41,open,dest={73656374696F6E2E313031},srcline={6}}{5C3337365C3337375C3030304D5C303030615C303030745C303030655C303030725C303030695C303030615C3030306C5C3030305C3034305C303030435C303030685C303030615C303030725C303030615C303030635C303030745C303030655C303030725C303030695C3030307A5C303030615C303030745C303030695C3030306F5C3030306E5C3030305C3034305C3030306F5C303030665C3030305C3034305C303030535C303030535C303030335C303030315C303030365C3030304C}
\BKM@entry{id=42,open,dest={73656374696F6E2E313036},srcline={12}}{5C3337365C3337375C303030705C303030485C3030305C3034305C3030304D5C303030655C303030615C303030735C303030755C303030725C303030655C3030306D5C303030655C3030306E5C30303074}
\BKM@entry{id=43,open,dest={73656374696F6E2E313037},srcline={14}}{5C3337365C3337375C303030455C3030306E5C303030645C303030755C303030725C303030615C3030306E5C303030635C303030655C3030305C3034305C303030525C303030755C3030306E}
\BKM@entry{id=44,open,dest={73756273656374696F6E2E313132},srcline={22}}{5C3337365C3337375C303030505C303030725C3030306F5C303030645C303030755C303030635C303030745C3030305C3034305C303030575C303030615C303030745C303030655C303030725C3030305C3034305C303030415C3030306E5C303030615C3030306C5C303030795C303030735C303030695C30303073}
\BKM@entry{id=45,open,dest={73656374696F6E2E313133},srcline={25}}{5C3337365C3337375C303030455C303030785C3030302D5C303030535C303030695C303030745C303030755C3030305C3034305C303030415C3030306E5C303030615C3030306C5C303030795C303030735C303030695C30303073}
\BKM@entry{id=46,open,dest={73756273656374696F6E2E313134},srcline={27}}{5C3337365C3337375C3030304C5C303030495C303030425C303030535C3030305C3034305C3030304D5C303030655C303030615C303030735C303030755C303030725C303030655C3030306D5C303030655C3030306E5C30303074}
\BKM@entry{id=47,open,dest={73756273656374696F6E2E313135},srcline={29}}{5C3337365C3337375C303030455C303030445C303030585C3030305C3034305C3030304D5C303030655C303030615C303030735C303030755C303030725C303030655C3030306D5C303030655C3030306E5C30303074}
\BKM@entry{id=48,open,dest={73756273656374696F6E2E313136},srcline={31}}{5C3337365C3337375C303030535C303030455C3030304D5C3030305C3034305C3030304D5C303030655C303030615C303030735C303030755C303030725C303030655C3030306D5C303030655C3030306E5C30303074}
\BKM@entry{id=49,open,dest={73756273656374696F6E2E313137},srcline={33}}{5C3337365C3337375C303030495C303030435C303030505C3030305C3034305C3030304D5C303030655C303030615C303030735C303030755C303030725C303030655C3030306D5C303030655C3030306E5C30303074}
\@writefile{toc}{\contentsline {chapter}{\numberline {4}Results and Discussion}{21}{chapter.100}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:Ergebnisse und Diskussion}{{4}{21}{Results and Discussion}{chapter.100}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.1}Material Characterization of SS316L}{21}{section.101}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Corrosion Parameters}{21}{subsubsection*.103}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Department of Energy Target}{21}{subsubsection*.105}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {4.2}pH Measurement}{21}{section.106}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {4.3}Endurance Run}{21}{section.107}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Polarization Curves}{21}{subsubsection*.109}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\nonumberline Effects of Relative Humidity in the Air}{21}{subsubsection*.111}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.1}Product Water Analysis}{21}{subsection.112}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {4.4}Ex-Situ Analysis}{21}{section.113}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.1}LIBS Measurement}{21}{subsection.114}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.2}EDX Measurement}{21}{subsection.115}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.3}SEM Measurement}{21}{subsection.116}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.4.4}ICP Measurement}{21}{subsection.117}\protected@file@percent }
\BKM@entry{id=50,open,dest={636861707465722E313138},srcline={1}}{5C3337365C3337375C303030535C303030755C3030306D5C3030306D5C303030615C303030725C303030795C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C3030304F5C303030755C303030745C3030306C5C3030306F5C3030306F5C3030306B}
\BKM@entry{id=51,open,dest={73656374696F6E2E313139},srcline={4}}{5C3337365C3337375C303030535C303030755C3030306D5C3030306D5C303030615C303030725C30303079}
\BKM@entry{id=52,open,dest={73656374696F6E2E313230},srcline={9}}{5C3337365C3337375C3030304F5C303030755C303030745C3030306C5C3030306F5C3030306F5C3030306B}
\@writefile{toc}{\contentsline {chapter}{\numberline {5}Summary and Outlook}{23}{chapter.118}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{cap:SummaryAndOutlook}{{5}{23}{Summary and Outlook}{chapter.118}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.1}Summary}{23}{section.119}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {5.2}Outlook}{23}{section.120}\protected@file@percent }
\bibstyle{unsrtnat}
\bibdata{Bibliography}
\BKM@entry{id=53,open,dest={636861707465722A2E313231},srcline={1}}{5C3337365C3337375C303030425C303030695C303030625C3030306C5C303030695C3030306F5C303030675C303030725C303030615C303030705C303030685C30303079}
\bibcite{01_ipcc_sr15_2018}{{1}{2018}{{Intergovernmental Panel on Climate Change (IPCC)}}{{}}}
\bibcite{01_xu_ramanathan_2017}{{2}{2017}{{Xu and Ramanathan}}{{}}}
\bibcite{01_E_klimaschutzgesetz}{{3}{2024}{{of~Germany}}{{}}}
\bibcite{01_umweltbundesamt_treibhausgas_eu}{{4}{2024{}}{{Umweltbundesamt}}{{}}}
\bibcite{01_ipcc_ar6_wg1_2021}{{5}{IPCC}{{on~Climate Change~}}{{(2021)}}}
\bibcite{01_umweltbundesamt_verkehr_emissionen}{{6}{2024{}}{{Umweltbundesamt}}{{}}}
\bibcite{01_destatis_co2_strassenverkehr}{{7}{Destatis}{{}}{{(2024)}}}
\bibcite{01_un_climatechange_causes_2023}{{8}{2023}{{Nations}}{{}}}
\bibcite{01_wilberforce_advances_2016}{{9}{2016}{{Wilberforce et~al.}}{{Wilberforce, Alaswad, Palumbo, Dassisti, and Olabi}}}
\bibcite{01_wilberforce_developments_2017}{{10}{2017}{{Wilberforce et~al.}}{{Wilberforce, El-Hassan, Khatib, Al~Makky, Baroutaji, Carton, and Olabi}}}
\bibcite{wang_preparation_2018}{{11}{2018}{{Wang et~al.}}{{Wang, Zhang, Lu, Wang, and Li}}}
\@writefile{toc}{\contentsline {chapter}{\nonumberline Bibliography}{25}{chapter*.121}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\bibcite{elferjani_coupling_2021}{{12}{2021}{{Elferjani et~al.}}{{Elferjani, Serre, Ter-Ovanessian, and Normand}}}
\bibcite{02_baroutaji2015materials}{{13}{2015{}}{{Baroutaji et~al.}}{{Baroutaji, Carton, Sajjia, and Olabi}}}
\bibcite{02_lucia2014overview}{{14}{2014}{{Lucia}}{{}}}
\bibcite{02_wang2020fundamentals}{{15}{2020}{{Wang et~al.}}{{Wang, Seo, Wang, Zamel, Jiao, and Adroher}}}
\bibcite{02_Abderezzak2018}{{16}{2018}{{Abderezzak}}{{}}}
\bibcite{SOFC_hauser2021effects}{{17}{2021}{{Hauser}}{{}}}
\bibcite{SOFC_lin_analysis_2024}{{18}{2024}{{Lin et~al.}}{{Lin, Kerscher, Herrmann, Steinrücken, and Spliethoff}}}
\bibcite{SOFC_Haberman2004}{{19}{2004}{{Haberman and Young}}{{}}}
\bibcite{SOFC_WGS_Buttler2016}{{20}{2016}{{Buttler and Spliethoff}}{{}}}
\bibcite{MCFScontreras2021molten}{{21}{2021}{{Contreras et~al.}}{{Contreras, Almarza, and Rinc{\'o}n}}}
\bibcite{MCFS_cui2021review}{{22}{2021}{{Cui et~al.}}{{Cui, Li, Gong, Wei, Hou, Jiang, Yao, and Ma}}}
\bibcite{AFC_mclean2002assessment}{{23}{2002}{{McLean et~al.}}{{McLean, Niet, Prince-Richard, and Djilali}}}
\bibcite{AFC_AlSaleh1994_CO2}{{24}{1994{}}{{Al-Saleh et~al.}}{{Al-Saleh, Gultekin, Al-Zakri, and Celiker}}}
\bibcite{AFC_AlSaleh1994_Ni}{{25}{1994{}}{{Al-Saleh et~al.}}{{Al-Saleh, Gultekin, Al-Zakri, and Celiker}}}
\bibcite{PEM_Atuomotive_arrigoni2022greenhouse}{{26}{2022}{{Arrigoni et~al.}}{{Arrigoni, Arosio, Basso~Peressut, Latorrata, and Dotelli}}}
\bibcite{Fundamentals_o2016fuel}{{27}{2016}{{O'hayre et~al.}}{{O'hayre, Cha, Colella, and Prinz}}}
\bibcite{Fundamentals_scherer2012fuel}{{28}{2012}{{Scherer}}{{}}}
\bibcite{Fund_barbir2008fuel}{{29}{2008}{{Barbir}}{{}}}
\bibcite{F_omran2021mathematical}{{30}{2021}{{Omran et~al.}}{{Omran, Lucchesi, Smith, Alaswad, Amiri, Wilberforce, Sodr{\'e}, and Olabi}}}
\bibcite{Nernst_sahu2014performance}{{31}{2014}{{Sahu et~al.}}{{Sahu, Krishna, Biswas, and Das}}}
\bibcite{Nernst_mardle2021examination}{{32}{2021{}}{{Mardle et~al.}}{{Mardle, Cerri, Suzuki, and El-Kharouf}}}
\bibcite{PEMSchem_xu2020towards}{{33}{2020}{{Xu et~al.}}{{Xu, Qiu, Yi, Peng, and Lai}}}
\bibcite{PEM_baroutaji2015materials}{{34}{2015{}}{{Baroutaji et~al.}}{{Baroutaji, Carton, Sajjia, and Olabi}}}
\bibcite{doe_pemfc_targets}{{35}{2024}{{U.S. Department of Energy}}{{}}}
\bibcite{antunes2010}{{36}{2010}{{Antunes et~al.}}{{Antunes, Oliveira, Ett, and Ett}}}
\bibcite{SSweight_li2005review}{{37}{2005}{{Li and Sabir}}{{}}}
\bibcite{Automotive_leng2020}{{38}{2020}{{Leng et~al.}}{{Leng, Ming, Yang, and Zhang}}}
\bibcite{toyota_technical_review_2021}{{39}{2021}{{Toyota Motor Corporation}}{{}}}
\bibcite{bmw_hydrogen_2024}{{40}{2024}{{BMW Group}}{{}}}
\bibcite{eom2012}{{41}{2012}{{Eom et~al.}}{{Eom, Cho, Nam, Lim, Jang, Kim, Hong, and Yang}}}
\bibcite{sulek2011}{{42}{2011}{{Sulek et~al.}}{{Sulek, Adams, Kaberline, Ricketts, and Waldecker}}}
\bibcite{papadias2015degradation}{{43}{2015}{{Papadias et~al.}}{{Papadias, Ahluwalia, Thomson, Meyer~III, Brady, Wang, Turner, Mukundan, and Borup}}}
\bibcite{feng2011}{{44}{2011}{{Feng et~al.}}{{Feng, Wu, Li, Cai, and Chu}}}
\bibcite{MEA_lim2021comparison}{{45}{2021}{{Lim et~al.}}{{Lim, Majlan, Tajuddin, Husaini, Daud, Radzuan, and Haque}}}
\bibcite{MEA_lapicque2012}{{46}{2012}{{Lapicque et~al.}}{{Lapicque, Bonnet, Huang, and Chatillon}}}
\bibcite{MEA_bhosale2020}{{47}{2020}{{Bhosale et~al.}}{{Bhosale, Ghosh, and Assaud}}}
\bibcite{PEM_MEA_parekh2022recent}{{48}{2022}{{Parekh}}{{}}}
\bibcite{Pt_liew2014}{{49}{2014}{{Liew et~al.}}{{Liew, Daud, Ghasemi, Leong, Lim, and Ismail}}}
\bibcite{thiele2024realistic}{{50}{2024{}}{{Thiele et~al.}}{{Thiele, Yang, Dirkes, Wick, and Pischinger}}}
\bibcite{GDL_zamel2011}{{51}{2011}{{Zamel et~al.}}{{Zamel, Litovsky, Shakhshir, et~al.}}}
\bibcite{ijaodola2019}{{52}{2019}{{Ijaodola et~al.}}{{Ijaodola, El-Hassan, Ogungbemi, Khatib, Wilberforce, Thompson, and Olabi}}}
\bibcite{majlan2018}{{53}{2018}{{Majlan et~al.}}{{Majlan, Rohendi, Daud, Husaini, and Haque}}}
\bibcite{CT_malek2011}{{54}{2011}{{Malek et~al.}}{{Malek, Mashio, and Eikerling}}}
\bibcite{hnat2019}{{55}{2019}{{Hnát et~al.}}{{Hnát, Plevova, Tufa, Zitka, Paidar, and Bouzek}}}
\bibcite{ink_zamel2016catalyst}{{56}{2016}{{Zamel}}{{}}}
\bibcite{ghassemzadeh2010chemical}{{57}{2010}{{Ghassemzadeh et~al.}}{{Ghassemzadeh, Kreuer, Maier, and Muller}}}
\bibcite{okonkwo2021nafion}{{58}{2021{}}{{Okonkwo et~al.}}{{Okonkwo, Belgacem, Emori, and Uzoma}}}
\bibcite{zaidi2009polymer}{{59}{2009}{{Zaidi and Matsuura}}{{}}}
\bibcite{teranishi2006}{{60}{2006}{{Teranishi et~al.}}{{Teranishi, Kawata, Tsushima, and Hirai}}}
\bibcite{ren2020degradation}{{61}{2020}{{Ren et~al.}}{{Ren, Pei, Li, Wu, Chen, and Huang}}}
\bibcite{trabia2016}{{62}{2016}{{Trabia et~al.}}{{Trabia, Hwang, and Kim}}}
\bibcite{Loss_mardle2021examination}{{63}{2021{}}{{Mardle et~al.}}{{Mardle, Cerri, Suzuki, and El-Kharouf}}}
\bibcite{Loss_jung2010dynamic}{{64}{2010}{{Jung and Ahmed}}{{}}}
\bibcite{Loss_mazzeo2024assessing}{{65}{2024}{{Mazzeo et~al.}}{{Mazzeo, Di~Napoli, and Carello}}}
\bibcite{Loss_li2022new}{{66}{2022}{{Li et~al.}}{{Li, Luo, Yang, and Ma}}}
\bibcite{jouin2016}{{67}{2016}{{Jouin et~al.}}{{Jouin, Gouriveau, Hissel, Péra, and Zerhouni}}}
\bibcite{springer1991}{{68}{1991}{{Springer et~al.}}{{Springer, Zawodzinski, and Gottesfeld}}}
\bibcite{liu2024study}{{69}{2024}{{Liu et~al.}}{{Liu, Zhao, Fu, Lin, Zhu, Wang, and Yuan}}}
\bibcite{mohsin2020electrochemical}{{70}{2020}{{Mohsin et~al.}}{{Mohsin, Raza, Mohsin-ul Mulk, Yousaf, and Hacker}}}
\bibcite{Pol_thiele2024realistic}{{71}{2024{}}{{Thiele et~al.}}{{Thiele, Yang, Dirkes, Wick, and Pischinger}}}
\bibcite{pei2008}{{72}{2008}{{Pei et~al.}}{{Pei, Chang, and Tang}}}
\bibcite{cherevko2015}{{73}{2015}{{Cherevko et~al.}}{{Cherevko, Keeley, Geiger, Zeradjanin, Hodnik, Kulyk, et~al.}}}
\bibcite{luo2010}{{74}{2010}{{Luo et~al.}}{{Luo, Xie, Zou, Zhou, and Wang}}}
\bibcite{wallnofer2024main}{{75}{2024}{{Walln{\"o}fer-Ogris et~al.}}{{Walln{\"o}fer-Ogris, Poimer, K{\"o}ll, Macherhammer, and Trattner}}}
\bibcite{takei2016}{{76}{2016}{{Takei et~al.}}{{Takei, Kakinuma, Kawashima, Tashiro, Watanabe, and Uchida}}}
\bibcite{pavlivsivc2018platinum}{{77}{2018}{{Pavli{\v {s}}i{\v {c}} et~al.}}{{Pavli{\v {s}}i{\v {c}}, Jovanovi{\v {c}}, {\v {S}}elih, {\v {S}}ala, Hodnik, and Gaber{\v {s}}{\v {c}}ek}}}
\bibcite{okonkwo2021platinum}{{78}{2021{}}{{Okonkwo et~al.}}{{Okonkwo, Ige, Uzoma, Emori, Benamor, Abdullah, et~al.}}}
\bibcite{park2016effects}{{79}{2016}{{Park et~al.}}{{Park, Tokiwa, Kakinuma, Watanabe, and Uchida}}}
\bibcite{zhao2021carbon}{{80}{2021}{{Zhao et~al.}}{{Zhao, Tu, and Chan}}}
\bibcite{lin2015investigating}{{81}{2015}{{Lin et~al.}}{{Lin, Cui, Shan, T{\'e}cher, Xiong, and Zhang}}}
\bibcite{ohma2008}{{82}{2008}{{Ohma et~al.}}{{Ohma, Yamamoto, and Shinohara}}}
\bibcite{matsutani2010}{{83}{2010}{{Matsutani et~al.}}{{Matsutani, Hayakawa, and Tada}}}
\bibcite{Corr_ren2022corrosion}{{84}{2022}{{Ren et~al.}}{{Ren, Pei, Chen, Zhang, Li, Song, Wang, and Wang}}}
\bibcite{Corr_kumagai2012high}{{85}{2012}{{Kumagai et~al.}}{{Kumagai, Myung, Ichikawa, Yashiro, and Katada}}}
\bibcite{Corr_mele2010localised}{{86}{2010}{{Mele and Bozzini}}{{}}}
\BKM@entry{id=54,open,dest={617070656E6469782E313232},srcline={1}}{5C3337365C3337375C303030415C303030705C303030705C303030655C3030306E5C303030645C303030695C30303078}
\BKM@entry{id=55,open,dest={73656374696F6E2E313233},srcline={15}}{5C3337365C3337375C303030465C303030695C303030725C303030735C303030745C3030305C3034305C303030415C303030705C303030705C303030655C3030306E5C303030645C303030695C30303078}
\BKM@entry{id=56,open,dest={73656374696F6E2E313234},srcline={19}}{5C3337365C3337375C303030535C303030655C303030635C3030306F5C3030306E5C303030645C3030305C3034305C303030415C303030705C303030705C303030655C3030306E5C303030645C303030695C30303078}
\@writefile{toc}{\contentsline {chapter}{\numberline {A}Appendix}{33}{appendix.122}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{cap:Appendix}{{A}{33}{Appendix}{appendix.122}{}}
\@writefile{toc}{\contentsline {section}{\numberline {A.1}First Appendix}{33}{section.123}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {A.2}Second Appendix}{33}{section.124}\protected@file@percent }
\global\csname @altsecnumformattrue\endcsname
\global\@namedef{scr@dte@chapter@lastmaxnumwidth}{12.84753pt}
\global\@namedef{scr@dte@section@lastmaxnumwidth}{21.10905pt}
\global\@namedef{scr@dte@subsection@lastmaxnumwidth}{26.88818pt}
\global\@namedef{scr@dte@table@lastmaxnumwidth}{18.37155pt}
\global\@namedef{scr@dte@figure@lastmaxnumwidth}{18.37155pt}
\@writefile{toc}{\providecommand\tocbasic@end@toc@file{}\tocbasic@end@toc@file}
\@writefile{lof}{\providecommand\tocbasic@end@toc@file{}\tocbasic@end@toc@file}
\@writefile{lot}{\providecommand\tocbasic@end@toc@file{}\tocbasic@end@toc@file}
\gdef \@abspage@last{51}

+ 676
- 0
2024_MA_Platteau.bbl Просмотреть файл

@@ -0,0 +1,676 @@
\begin{thebibliography}{86}
\providecommand{\natexlab}[1]{#1}
\providecommand{\url}[1]{\texttt{#1}}
\expandafter\ifx\csname urlstyle\endcsname\relax
\providecommand{\doi}[1]{doi: #1}\else
\providecommand{\doi}{doi: \begingroup \urlstyle{rm}\Url}\fi

\bibitem[{Intergovernmental Panel on Climate Change
(IPCC)}(2018)]{01_ipcc_sr15_2018}
{Intergovernmental Panel on Climate Change (IPCC)}.
\newblock Global warming of 1.5°c: An ipcc special report, 2018.
\newblock URL \url{https://www.ipcc.ch/sr15/}.
\newblock Accessed: 2024-08-27.

\bibitem[Xu and Ramanathan(2017)]{01_xu_ramanathan_2017}
Yangyang Xu and Veerabhadran Ramanathan.
\newblock Well below 2$\degree$ c : Mitigation strategies for avoiding
dangerous to catastrophic climate changes.
\newblock \emph{Proceedings of the National Academy of Sciences}, 114\penalty0
(39), 2017.
\newblock ISSN 0027-8424, 1091-6490.
\newblock URL \url{https://pnas.org/doi/full/10.1073/pnas.1618481114}.
\newblock pages 10315--10323.

\bibitem[of~Germany(2024)]{01_E_klimaschutzgesetz}
Federal~Government of~Germany.
\newblock Ein plan fürs klima, 2024.
\newblock URL
\url{https://www.bundesregierung.de/breg-de/themen/tipps-fuer-verbraucher/klimaschutzgesetz-2197410}.
\newblock Accessed: 2024-08-26.

\bibitem[Umweltbundesamt(2024{\natexlab{a}})]{01_umweltbundesamt_treibhausgas_eu}
Umweltbundesamt.
\newblock Treibhausgas-emissionen in der europäischen union: Trends,
2024{\natexlab{a}}.
\newblock URL
\url{https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-in-der-europaeischen-union#trends}.
\newblock Accessed: 2024-08-27.

\bibitem[on~Climate Change~(IPCC)(2021)]{01_ipcc_ar6_wg1_2021}
Intergovernmental~Panel on~Climate Change~(IPCC).
\newblock Ipcc ar6 working group i summary for policymakers, 2021.
\newblock URL
\url{https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf}.
\newblock pages 6-7, Accessed: 2024-08-27.

\bibitem[Umweltbundesamt(2024{\natexlab{b}})]{01_umweltbundesamt_verkehr_emissionen}
Umweltbundesamt.
\newblock Emissionen des verkehrs: Verkehr belastet luft und klima -
minderungsziele der bundesregierung, 2024{\natexlab{b}}.
\newblock URL
\url{https://www.umweltbundesamt.de/daten/verkehr/emissionen-des-verkehrs#verkehr-belastet-luft-und-klima-minderungsziele-der-bundesregierung}.
\newblock Accessed: 2024-08-27.

\bibitem[(Destatis)(2024)]{01_destatis_co2_strassenverkehr}
Statistisches~Bundesamt (Destatis).
\newblock Co2-emissionen im straßenverkehr in europa, 2024.
\newblock URL
\url{https://www.destatis.de/Europa/DE/Thema/Umwelt-Energie/CO2_Strassenverkehr.html}.
\newblock Accessed: 2024-08-27.

\bibitem[Nations(2023)]{01_un_climatechange_causes_2023}
United Nations.
\newblock Causes and effects of climate change, 2023.
\newblock URL
\url{https://www.un.org/en/climatechange/science/causes-effects-climate-change}.
\newblock Accessed: 2024-08-27.

\bibitem[Wilberforce et~al.(2016)Wilberforce, Alaswad, Palumbo, Dassisti, and
Olabi]{01_wilberforce_advances_2016}
Tabbi Wilberforce, A.~Alaswad, A.~Palumbo, M.~Dassisti, and A.G. Olabi.
\newblock Advances in stationary and portable fuel cell applications.
\newblock \emph{International Journal of Hydrogen Energy}, 41\penalty0
(37):\penalty0 16509--16522, October 2016.
\newblock ISSN 03603199.
\newblock \doi{10.1016/j.ijhydene.2016.02.057}.
\newblock URL
\url{https://linkinghub.elsevier.com/retrieve/pii/S0360319915315822}.

\bibitem[Wilberforce et~al.(2017)Wilberforce, El-Hassan, Khatib, Al~Makky,
Baroutaji, Carton, and Olabi]{01_wilberforce_developments_2017}
Tabbi Wilberforce, Zaki El-Hassan, F.N. Khatib, Ahmed Al~Makky, Ahmad
Baroutaji, James~G. Carton, and Abdul~G. Olabi.
\newblock Developments of electric cars and fuel cell hydrogen electric cars.
\newblock \emph{International Journal of Hydrogen Energy}, 42\penalty0
(40):\penalty0 25695--25734, October 2017.
\newblock ISSN 03603199.
\newblock \doi{10.1016/j.ijhydene.2017.07.054}.
\newblock URL
\url{https://linkinghub.elsevier.com/retrieve/pii/S036031991732791X}.

\bibitem[Wang et~al.(2018)Wang, Zhang, Lu, Wang, and Li]{wang_preparation_2018}
Yanli Wang, Shenghua Zhang, Zhaoxia Lu, Lisheng Wang, and Weihua Li.
\newblock Preparation and performances of electrically conductive {Nb}-doped
{TiO2} coatings for 316 stainless steel bipolar plates of proton-exchange
membrane fuel cells.
\newblock \emph{Corrosion Science}, 142:\penalty0 249--257, September 2018.
\newblock ISSN 0010938X.
\newblock \doi{10.1016/j.corsci.2018.07.034}.
\newblock URL
\url{https://linkinghub.elsevier.com/retrieve/pii/S0010938X17317900}.

\bibitem[Elferjani et~al.(2021)Elferjani, Serre, Ter-Ovanessian, and
Normand]{elferjani_coupling_2021}
I.~Elferjani, G.~Serre, B.~Ter-Ovanessian, and B.~Normand.
\newblock A coupling approach between metallic bipolar plates corrosion and
membrane chemical degradation in the proton exchange membrane fuel cells.
\newblock \emph{International Journal of Hydrogen Energy}, 46\penalty0
(63):\penalty0 32226--32241, September 2021.
\newblock ISSN 03603199.
\newblock \doi{10.1016/j.ijhydene.2021.06.215}.
\newblock URL
\url{https://linkinghub.elsevier.com/retrieve/pii/S0360319921025039}.

\bibitem[Baroutaji et~al.(2015{\natexlab{a}})Baroutaji, Carton, Sajjia, and
Olabi]{02_baroutaji2015materials}
Ahmad Baroutaji, JG~Carton, Mustafa Sajjia, and Abdul~Ghani Olabi.
\newblock Materials in pem fuel cells.
\newblock 2015{\natexlab{a}}.

\bibitem[Lucia(2014)]{02_lucia2014overview}
Umberto Lucia.
\newblock Overview on fuel cells.
\newblock \emph{Renewable and Sustainable Energy Reviews}, 30:\penalty0
164--169, 2014.
\newblock pages 164-169.

\bibitem[Wang et~al.(2020)Wang, Seo, Wang, Zamel, Jiao, and
Adroher]{02_wang2020fundamentals}
Yun Wang, Bongjin Seo, Bowen Wang, Nada Zamel, Kui Jiao, and Xavier~Cordobes
Adroher.
\newblock Fundamentals, materials, and machine learning of polymer electrolyte
membrane fuel cell technology.
\newblock \emph{Energy and AI}, 1:\penalty0 100014, 2020.
\newblock page 100014.

\bibitem[Abderezzak(2018)]{02_Abderezzak2018}
B.~Abderezzak.
\newblock \emph{Introduction to Transfer Phenomena in PEM Fuel Cells}.
\newblock Elsevier, 1st edition, 2018.
\newblock page = 16.

\bibitem[Hauser(2021)]{SOFC_hauser2021effects}
Michael~Maximilian Hauser.
\newblock \emph{Effects of Tars on Solid Oxide Fuel Cells}.
\newblock PhD thesis, Technische Universit{\"a}t M{\"u}nchen, 2021.

\bibitem[Lin et~al.(2024)Lin, Kerscher, Herrmann, Steinrücken, and
Spliethoff]{SOFC_lin_analysis_2024}
Chen Lin, Florian Kerscher, Stephan Herrmann, Benjamin Steinrücken, and
Hartmut Spliethoff.
\newblock Analysis on temperature uniformity in methane-rich internal reforming
solid oxide fuel cells ({SOFCs}).
\newblock \emph{International Journal of Hydrogen Energy}, 57, February 2024.
\newblock ISSN 03603199.
\newblock \doi{10.1016/j.ijhydene.2024.01.071}.
\newblock URL
\url{https://linkinghub.elsevier.com/retrieve/pii/S0360319924000831}.
\newblock pages 769--788.

\bibitem[Haberman and Young(2004)]{SOFC_Haberman2004}
B.~A. Haberman and J.~B. Young.
\newblock Three-dimensional simulation of chemically reacting gas flows in the
porous support structure of an integrated-planar solid oxide fuel cell.
\newblock \emph{International Journal of Heat and Mass Transfer}, 47\penalty0
(17):\penalty0 3617--3629, 2004.
\newblock \doi{10.1016/j.ijheatmasstransfer.2004.03.009}.

\bibitem[Buttler and Spliethoff(2016)]{SOFC_WGS_Buttler2016}
A.~Buttler and H.~Spliethoff.
\newblock Kampf der studien.
\newblock Technical report, Lehrstuhl für Energiesysteme, 2016.

\bibitem[Contreras et~al.(2021)Contreras, Almarza, and
Rinc{\'o}n]{MCFScontreras2021molten}
Ricardo~R Contreras, Jorge Almarza, and Luis Rinc{\'o}n.
\newblock Molten carbonate fuel cells: a technological perspective and review.
\newblock \emph{Energy Sources, Part A: Recovery, Utilization, and
Environmental Effects}, pages 1--15, 2021.

\bibitem[Cui et~al.(2021)Cui, Li, Gong, Wei, Hou, Jiang, Yao, and
Ma]{MCFS_cui2021review}
Can Cui, Shuangbin Li, Junyi Gong, Keyan Wei, Xiangjun Hou, Cairong Jiang, Yali
Yao, and Jianjun Ma.
\newblock Review of molten carbonate-based direct carbon fuel cells.
\newblock \emph{Materials for Renewable and Sustainable Energy}, 10:\penalty0
1--24, 2021.

\bibitem[McLean et~al.(2002)McLean, Niet, Prince-Richard, and
Djilali]{AFC_mclean2002assessment}
GF~McLean, T~Niet, S~Prince-Richard, and N~Djilali.
\newblock An assessment of alkaline fuel cell technology.
\newblock \emph{International Journal of Hydrogen Energy}, 27\penalty0
(5):\penalty0 507--526, 2002.
\newblock page 513.

\bibitem[Al-Saleh et~al.(1994{\natexlab{a}})Al-Saleh, Gultekin, Al-Zakri, and
Celiker]{AFC_AlSaleh1994_CO2}
M.A. Al-Saleh, S.~Gultekin, A.S. Al-Zakri, and H.~Celiker.
\newblock Effect of carbon dioxide on the performance of ni=ptfe and ag=ptfe
electrodes in an alkaline fuel cell.
\newblock \emph{Journal of Applied Electrochemistry}, 24:\penalty0 575--580,
1994{\natexlab{a}}.

\bibitem[Al-Saleh et~al.(1994{\natexlab{b}})Al-Saleh, Gultekin, Al-Zakri, and
Celiker]{AFC_AlSaleh1994_Ni}
M.A. Al-Saleh, S.~Gultekin, A.S. Al-Zakri, and H.~Celiker.
\newblock Performance of porous nickel electrode for alkaline h2=o2 fuel cell.
\newblock \emph{International Journal of Hydrogen Energy}, 19:\penalty0
713--718, 1994{\natexlab{b}}.

\bibitem[Arrigoni et~al.(2022)Arrigoni, Arosio, Basso~Peressut, Latorrata, and
Dotelli]{PEM_Atuomotive_arrigoni2022greenhouse}
Alessandro Arrigoni, Valeria Arosio, Andrea Basso~Peressut, Saverio Latorrata,
and Giovanni Dotelli.
\newblock Greenhouse gas implications of extending the service life of pem fuel
cells for automotive applications: A life cycle assessment.
\newblock \emph{Clean Technologies}, 4\penalty0 (1):\penalty0 132--148, 2022.

\bibitem[O'hayre et~al.(2016)O'hayre, Cha, Colella, and
Prinz]{Fundamentals_o2016fuel}
Ryan O'hayre, Suk-Won Cha, Whitney Colella, and Fritz~B Prinz.
\newblock \emph{Fuel cell fundamentals}.
\newblock John Wiley \& Sons, 2016.

\bibitem[Scherer(2012)]{Fundamentals_scherer2012fuel}
Günther~G Scherer.
\newblock Fuel cell types and their electrochemistry.
\newblock In \emph{Fuel Cells: Selected Entries from the Encyclopedia of
Sustainability Science and Technology}, pages 97--119. Springer, 2012.

\bibitem[Barbir(2008)]{Fund_barbir2008fuel}
Frano Barbir.
\newblock Fuel cell basic chemistry, electrochemistry and thermodynamics.
\newblock In \emph{Mini-Micro Fuel Cells: Fundamentals and Applications}, pages
13--26. Springer, 2008.

\bibitem[Omran et~al.(2021)Omran, Lucchesi, Smith, Alaswad, Amiri, Wilberforce,
Sodr{\'e}, and Olabi]{F_omran2021mathematical}
Abdelnasir Omran, Alessandro Lucchesi, David Smith, Abed Alaswad, Amirpiran
Amiri, Tabbi Wilberforce, Jos{\'e}~Ricardo Sodr{\'e}, and AG~Olabi.
\newblock Mathematical model of a proton-exchange membrane (pem) fuel cell.
\newblock \emph{International Journal of Thermofluids}, 11:\penalty0 100110,
2021.

\bibitem[Sahu et~al.(2014)Sahu, Krishna, Biswas, and
Das]{Nernst_sahu2014performance}
Ishwar~Prasad Sahu, Gali Krishna, Manojit Biswas, and Mihir~Kumar Das.
\newblock Performance study of pem fuel cell under different loading
conditions.
\newblock \emph{Energy Procedia}, 54:\penalty0 468--478, 2014.

\bibitem[Mardle et~al.(2021{\natexlab{a}})Mardle, Cerri, Suzuki, and
El-Kharouf]{Nernst_mardle2021examination}
Peter Mardle, Isotta Cerri, Toshiyuki Suzuki, and Ahmad El-Kharouf.
\newblock An examination of the catalyst layer contribution to the disparity
between the nernst potential and open circuit potential in proton exchange
membrane fuel cells.
\newblock \emph{Catalysts}, 11\penalty0 (8):\penalty0 965, 2021{\natexlab{a}}.

\bibitem[Xu et~al.(2020)Xu, Qiu, Yi, Peng, and Lai]{PEMSchem_xu2020towards}
Zhutian Xu, Diankai Qiu, Peiyun Yi, Linfa Peng, and Xinmin Lai.
\newblock Towards mass applications: A review on the challenges and
developments in metallic bipolar plates for pemfc.
\newblock \emph{Progress in natural science: materials international},
30\penalty0 (6):\penalty0 815--824, 2020.

\bibitem[Baroutaji et~al.(2015{\natexlab{b}})Baroutaji, Carton, Sajjia, and
Olabi]{PEM_baroutaji2015materials}
Ahmad Baroutaji, JG~Carton, Mustafa Sajjia, and Abdul~Ghani Olabi.
\newblock Materials in pem fuel cells.
\newblock pages 4--11, 2015{\natexlab{b}}.

\bibitem[{U.S. Department of Energy}(2024)]{doe_pemfc_targets}
{U.S. Department of Energy}.
\newblock Doe technical targets for polymer electrolyte membrane fuel cell
components, 2024.
\newblock URL
\url{https://www.energy.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components}.
\newblock Accessed: 2024-09-16.

\bibitem[Antunes et~al.(2010)Antunes, Oliveira, Ett, and Ett]{antunes2010}
R.A. Antunes, M.C.L. Oliveira, G.~Ett, and V.~Ett.
\newblock Corrosion of metal bipolar plates for pem fuel cells: A review.
\newblock \emph{International Journal of Hydrogen Energy}, 35\penalty0
(8):\penalty0 3632--3647, 2010.
\newblock \doi{10.1016/j.ijhydene.2010.01.059}.

\bibitem[Li and Sabir(2005)]{SSweight_li2005review}
Xianguo Li and Imad Sabir.
\newblock Review of bipolar plates in pem fuel cells: Flow-field designs.
\newblock \emph{International Journal of Hydrogen Energy}, 30\penalty0
(4):\penalty0 359--371, 2005.
\newblock \doi{10.1016/j.ijhydene.2004.09.019}.

\bibitem[Leng et~al.(2020)Leng, Ming, Yang, and Zhang]{Automotive_leng2020}
Y.~Leng, P.~Ming, D.~Yang, and C.~Zhang.
\newblock J. power sources 451 (2020) 227783.
\newblock \emph{Journal of Power Sources}, 451:\penalty0 227783, 2020.
\newblock \doi{10.1016/j.jpowsour.2019.227783}.

\bibitem[{Toyota Motor Corporation}(2021)]{toyota_technical_review_2021}
{Toyota Motor Corporation}.
\newblock Toyota technical review, vol. 66, 2021.
\newblock URL
\url{https://global.toyota/pages/global_toyota/mobility/technology/toyota-technical-review/TTR_Vol66_E.pdf}.
\newblock Accessed: 2024-09-16.

\bibitem[{BMW Group}(2024)]{bmw_hydrogen_2024}
{BMW Group}.
\newblock Hydrogen as a drive technology, 2024.
\newblock URL
\url{https://www.bmwgroup.com/en/innovation/drive-technologies/hydrogen.html}.
\newblock Accessed: 2024-09-16.

\bibitem[Eom et~al.(2012)Eom, Cho, Nam, Lim, Jang, Kim, Hong, and
Yang]{eom2012}
K.~Eom, E.~Cho, S.-W. Nam, T.-H. Lim, J.H. Jang, H.-J. Kim, B.K. Hong, and Y.C.
Yang.
\newblock Degradation behavior of a polymer electrolyte membrane fuel cell
employing metallic bipolar plates under reverse current condition.
\newblock \emph{Electrochimica Acta}, 78:\penalty0 324--330, 2012.
\newblock \doi{10.1016/j.electacta.2012.06.023}.

\bibitem[Sulek et~al.(2011)Sulek, Adams, Kaberline, Ricketts, and
Waldecker]{sulek2011}
M.~Sulek, J.~Adams, S.~Kaberline, M.~Ricketts, and J.R. Waldecker.
\newblock Investigation of stainless steel bipolar plates for pem fuel cells:
Corrosion and contact resistance measurements.
\newblock \emph{Journal of Power Sources}, 196:\penalty0 8967--8972, 2011.
\newblock \doi{10.1016/j.jpowsour.2011.06.048}.

\bibitem[Papadias et~al.(2015)Papadias, Ahluwalia, Thomson, Meyer~III, Brady,
Wang, Turner, Mukundan, and Borup]{papadias2015degradation}
Dionissios~D Papadias, Rajesh~K Ahluwalia, Jeffery~K Thomson, Harry~M
Meyer~III, Michael~P Brady, Heli Wang, John~A Turner, Rangachary Mukundan,
and Rod Borup.
\newblock Degradation of ss316l bipolar plates in simulated fuel cell
environment: Corrosion rate, barrier film formation kinetics and contact
resistance.
\newblock \emph{Journal of Power Sources}, 273:\penalty0 1237--1249, 2015.

\bibitem[Feng et~al.(2011)Feng, Wu, Li, Cai, and Chu]{feng2011}
K.~Feng, G.S. Wu, Z.G. Li, X.~Cai, and P.K. Chu.
\newblock Degradation of polymer electrolyte membrane fuel cells with stainless
steel bipolar plates.
\newblock \emph{International Journal of Hydrogen Energy}, 36:\penalty0
13032--13042, 2011.
\newblock \doi{10.1016/j.ijhydene.2011.07.113}.

\bibitem[Lim et~al.(2021)Lim, Majlan, Tajuddin, Husaini, Daud, Radzuan, and
Haque]{MEA_lim2021comparison}
Bee~Huah Lim, Edy~Herianto Majlan, Ahmad Tajuddin, Teuku Husaini, Wan Ramli~Wan
Daud, Nabilah Afiqah~Mohd Radzuan, and Md~Ahsanul Haque.
\newblock Comparison of catalyst-coated membranes and catalyst-coated substrate
for pemfc membrane electrode assembly: A review.
\newblock \emph{Chinese Journal of Chemical Engineering}, 33:\penalty0 1--16,
2021.

\bibitem[Lapicque et~al.(2012)Lapicque, Bonnet, Huang, and
Chatillon]{MEA_lapicque2012}
F.~Lapicque, C.~Bonnet, B.T. Huang, and Y.~Chatillon.
\newblock Analysis and evaluation of aging phenomena in pemfcs.
\newblock In A.C.E. Sundmacher, editor, \emph{Fuel Cell Engineering}, pages
265--330. Elsevier, Amsterdam, 2012.

\bibitem[Bhosale et~al.(2020)Bhosale, Ghosh, and Assaud]{MEA_bhosale2020}
A.~C. Bhosale, P.~C. Ghosh, and L.~Assaud.
\newblock Preparation methods of membrane electrode assemblies for proton
exchange membrane fuel cells and unitized regenerative fuel cells: A review.
\newblock \emph{Renewable and Sustainable Energy Reviews}, 133:\penalty0
110286, 2020.
\newblock \doi{10.1016/j.rser.2020.110286}.

\bibitem[Parekh(2022)]{PEM_MEA_parekh2022recent}
Abhi Parekh.
\newblock Recent developments of proton exchange membranes for pemfc: A review.
\newblock \emph{Frontiers in Energy Research}, 10:\penalty0 956132, 2022.

\bibitem[Liew et~al.(2014)Liew, Daud, Ghasemi, Leong, Lim, and
Ismail]{Pt_liew2014}
K.~Ben Liew, W.R.W. Daud, M.~Ghasemi, J.X. Leong, S.~Su Lim, and M.~Ismail.
\newblock Non-pt catalyst as oxygen reduction reaction in microbial fuel cells:
a review.
\newblock \emph{International Journal of Hydrogen Energy}, 39\penalty0
(10):\penalty0 4870--4883, 2014.
\newblock \doi{10.1016/j.ijhydene.2014.01.062}.

\bibitem[Thiele et~al.(2024{\natexlab{a}})Thiele, Yang, Dirkes, Wick, and
Pischinger]{thiele2024realistic}
Paul Thiele, Yue Yang, Steffen Dirkes, Maximilian Wick, and Stefan Pischinger.
\newblock Realistic accelerated stress tests for pem fuel cells: Test procedure
development based on standardized automotive driving cycles.
\newblock \emph{international journal of hydrogen energy}, 52:\penalty0
1065--1080, 2024{\natexlab{a}}.

\bibitem[Zamel et~al.(2011)Zamel, Litovsky, Shakhshir, et~al.]{GDL_zamel2011}
N.~Zamel, E.~Litovsky, S.~Shakhshir, et~al.
\newblock Measurement of in-plane thermal conductivity of carbon paper
diffusion media in the temperature range of -20 °c to +120 °c.
\newblock \emph{Applied Energy}, 88:\penalty0 3042--3050, 2011.
\newblock \doi{10.1016/j.apenergy.2011.02.008}.

\bibitem[Ijaodola et~al.(2019)Ijaodola, El-Hassan, Ogungbemi, Khatib,
Wilberforce, Thompson, and Olabi]{ijaodola2019}
O.S. Ijaodola, Z.~El-Hassan, E.~Ogungbemi, F.N. Khatib, T.~Wilberforce,
J.~Thompson, and A.G. Olabi.
\newblock A review of polymer electrolyte membrane fuel cell models for
application to automotive systems.
\newblock \emph{Energy}, 179:\penalty0 246--267, 2019.
\newblock \doi{10.1016/j.energy.2019.03.126}.

\bibitem[Majlan et~al.(2018)Majlan, Rohendi, Daud, Husaini, and
Haque]{majlan2018}
E.H. Majlan, D.~Rohendi, W.R.W. Daud, T.~Husaini, and M.A. Haque.
\newblock A review of polymer electrolyte membrane fuel cell (pemfc)
durability: Degradation mechanisms and mitigation strategies.
\newblock \emph{Renewable and Sustainable Energy Reviews}, 89:\penalty0
117--134, 2018.
\newblock \doi{10.1016/j.rser.2018.03.007}.

\bibitem[Malek et~al.(2011)Malek, Mashio, and Eikerling]{CT_malek2011}
K.~Malek, T.~Mashio, and M.~Eikerling.
\newblock Microstructure of catalyst layers in pem fuel cells redefined: a
computational approach.
\newblock \emph{Electrocatalysis}, 2\penalty0 (2):\penalty0 141--157, 2011.
\newblock \doi{10.1007/s12678-011-0047-0}.

\bibitem[Hnát et~al.(2019)Hnát, Plevova, Tufa, Zitka, Paidar, and
Bouzek]{hnat2019}
J.~Hnát, M.~Plevova, R.A. Tufa, J.~Zitka, M.~Paidar, and K.~Bouzek.
\newblock Development and testing of a novel catalyst-coated membrane with
platinum-free catalysts for alkaline water electrolysis.
\newblock \emph{International Journal of Hydrogen Energy}, 44:\penalty0
17493--17504, 2019.
\newblock \doi{10.1016/j.ijhydene.2019.05.067}.

\bibitem[Zamel(2016)]{ink_zamel2016catalyst}
Nada Zamel.
\newblock The catalyst layer and its dimensionality--a look into its
ingredients and how to characterize their effects.
\newblock \emph{Journal of Power Sources}, 309:\penalty0 141--159, 2016.

\bibitem[Ghassemzadeh et~al.(2010)Ghassemzadeh, Kreuer, Maier, and
Muller]{ghassemzadeh2010chemical}
Lida Ghassemzadeh, Klaus-Dieter Kreuer, Joachim Maier, and Klaus Muller.
\newblock Chemical degradation of nafion membranes under mimic fuel cell
conditions as investigated by solid-state nmr spectroscopy.
\newblock \emph{The Journal of Physical Chemistry C}, 114\penalty0
(34):\penalty0 14635--14645, 2010.

\bibitem[Okonkwo et~al.(2021{\natexlab{a}})Okonkwo, Belgacem, Emori, and
Uzoma]{okonkwo2021nafion}
Paul~C Okonkwo, Ikram~Ben Belgacem, Wilfred Emori, and Paul~C Uzoma.
\newblock Nafion degradation mechanisms in proton exchange membrane fuel cell
(pemfc) system: A review.
\newblock \emph{International journal of hydrogen energy}, 46\penalty0
(55):\penalty0 27956--27973, 2021{\natexlab{a}}.

\bibitem[Zaidi and Matsuura(2009)]{zaidi2009polymer}
SM~Javaid Zaidi and Takeshi Matsuura.
\newblock \emph{Polymer membranes for fuel cells}.
\newblock Springer, 2009.

\bibitem[Teranishi et~al.(2006)Teranishi, Kawata, Tsushima, and
Hirai]{teranishi2006}
K.~Teranishi, K.~Kawata, S.~Tsushima, and S.~Hirai.
\newblock Degradation mechanism of pemfc under open circuit operation.
\newblock \emph{Electrochemical and Solid-State Letters}, 9\penalty0
(10):\penalty0 475--477, 2006.
\newblock \doi{10.1149/1.2227524}.

\bibitem[Ren et~al.(2020)Ren, Pei, Li, Wu, Chen, and Huang]{ren2020degradation}
Peng Ren, Pucheng Pei, Yuehua Li, Ziyao Wu, Dongfang Chen, and Shangwei Huang.
\newblock Degradation mechanisms of proton exchange membrane fuel cell under
typical automotive operating conditions.
\newblock \emph{Progress in Energy and Combustion Science}, 80:\penalty0
100859, 2020.

\bibitem[Trabia et~al.(2016)Trabia, Hwang, and Kim]{trabia2016}
S.~Trabia, T.~Hwang, and K.J. Kim.
\newblock A fabrication method of unique nafion shapes by painting for ionic
polymer-metal composites.
\newblock \emph{Smart Materials and Structures}, 25:\penalty0 085006--085021,
2016.
\newblock \doi{10.1088/0964-1726/25/8/085006}.

\bibitem[Mardle et~al.(2021{\natexlab{b}})Mardle, Cerri, Suzuki, and
El-Kharouf]{Loss_mardle2021examination}
Peter Mardle, Isotta Cerri, Toshiyuki Suzuki, and Ahmad El-Kharouf.
\newblock An examination of the catalyst layer contribution to the disparity
between the nernst potential and open circuit potential in proton exchange
membrane fuel cells.
\newblock \emph{Catalysts}, 11\penalty0 (8):\penalty0 965, 2021{\natexlab{b}}.

\bibitem[Jung and Ahmed(2010)]{Loss_jung2010dynamic}
Jee-Hoon Jung and Shehab Ahmed.
\newblock Dynamic model of pem fuel cell using real-time simulation techniques.
\newblock \emph{Journal of Power Electronics}, 10\penalty0 (6):\penalty0
739--748, 2010.

\bibitem[Mazzeo et~al.(2024)Mazzeo, Di~Napoli, and
Carello]{Loss_mazzeo2024assessing}
Francesco Mazzeo, Luca Di~Napoli, and Massimiliana Carello.
\newblock Assessing open circuit voltage losses in pemfcs: A new methodological
approach.
\newblock \emph{Energies}, 17\penalty0 (11):\penalty0 2785, 2024.

\bibitem[Li et~al.(2022)Li, Luo, Yang, and Ma]{Loss_li2022new}
Jianwei Li, Lei Luo, Qingqing Yang, and Rui Ma.
\newblock A new fuel cell degradation model indexed by proton exchange membrane
thickness derived from polarization curve.
\newblock \emph{IEEE Transactions on Transportation Electrification},
9\penalty0 (4):\penalty0 5061--5073, 2022.

\bibitem[Jouin et~al.(2016)Jouin, Gouriveau, Hissel, Péra, and
Zerhouni]{jouin2016}
M.~Jouin, R.~Gouriveau, D.~Hissel, M.-C. Péra, and N.~Zerhouni.
\newblock Degradations analysis and aging modeling for health assessment and
prognostics of pemfc.
\newblock \emph{Reliability Engineering \& System Safety}, 148:\penalty0
78--95, 2016.
\newblock \doi{10.1016/j.ress.2015.12.003}.

\bibitem[Springer et~al.(1991)Springer, Zawodzinski, and
Gottesfeld]{springer1991}
T.E. Springer, T.A. Zawodzinski, and S.~Gottesfeld.
\newblock Polymer electrolyte fuel cell model.
\newblock \emph{Journal of The Electrochemical Society}, 138\penalty0
(8):\penalty0 2334--2342, 1991.
\newblock \doi{10.1149/1.2085971}.

\bibitem[Liu et~al.(2024)Liu, Zhao, Fu, Lin, Zhu, Wang, and Yuan]{liu2024study}
Qi~Liu, Zijian Zhao, Weidong Fu, Zhe Lin, Zuchao Zhu, Haifeng Wang, and Yunchao
Yuan.
\newblock Study on the influence of the hydrogen--oxygen stoichiometric ratio
on the power performance improvement in a large-scale pemfc stack.
\newblock \emph{Journal of Power Sources}, 620:\penalty0 235279, 2024.

\bibitem[Mohsin et~al.(2020)Mohsin, Raza, Mohsin-ul Mulk, Yousaf, and
Hacker]{mohsin2020electrochemical}
Munazza Mohsin, Rizwan Raza, M~Mohsin-ul Mulk, Abida Yousaf, and Viktor Hacker.
\newblock Electrochemical characterization of polymer electrolyte membrane fuel
cells and polarization curve analysis.
\newblock \emph{International Journal of Hydrogen Energy}, 45\penalty0
(45):\penalty0 24093--24107, 2020.

\bibitem[Thiele et~al.(2024{\natexlab{b}})Thiele, Yang, Dirkes, Wick, and
Pischinger]{Pol_thiele2024realistic}
Paul Thiele, Yue Yang, Steffen Dirkes, Maximilian Wick, and Stefan Pischinger.
\newblock Realistic accelerated stress tests for pem fuel cells: Test procedure
development based on standardized automotive driving cycles.
\newblock \emph{international journal of hydrogen energy}, 52:\penalty0
1065--1080, 2024{\natexlab{b}}.

\bibitem[Pei et~al.(2008)Pei, Chang, and Tang]{pei2008}
P.~Pei, Q.~Chang, and T.~Tang.
\newblock A quick evaluating method for automotive fuel cell lifetime.
\newblock \emph{International Journal of Hydrogen Energy}, 33\penalty0
(14):\penalty0 3829--3836, 2008.
\newblock ISSN 0360-3199.
\newblock \doi{10.1016/j.ijhydene.2008.04.048}.

\bibitem[Cherevko et~al.(2015)Cherevko, Keeley, Geiger, Zeradjanin, Hodnik,
Kulyk, et~al.]{cherevko2015}
S.~Cherevko, G.P. Keeley, S.~Geiger, A.R. Zeradjanin, N.~Hodnik, N.~Kulyk,
et~al.
\newblock Dissolution of platinum in the operational range of fuel cells.
\newblock \emph{ChemElectroChem}, 2:\penalty0 1471--1479, 2015.
\newblock \doi{10.1002/celc.201500207}.

\bibitem[Luo et~al.(2010)Luo, Xie, Zou, Zhou, and Wang]{luo2010}
G.~Luo, L.~Xie, Z.~Zou, Q.~Zhou, and J.-Y. Wang.
\newblock Fermentative hydrogen production from cassava stillage by mixed
anaerobic microflora: effects of temperature and ph.
\newblock \emph{Applied Energy}, 87:\penalty0 3710--3717, 2010.
\newblock \doi{10.1016/j.apenergy.2010.06.005}.

\bibitem[Walln{\"o}fer-Ogris et~al.(2024)Walln{\"o}fer-Ogris, Poimer, K{\"o}ll,
Macherhammer, and Trattner]{wallnofer2024main}
Eva Walln{\"o}fer-Ogris, Florian Poimer, Rebekka K{\"o}ll, Marie-Gabrielle
Macherhammer, and Alexander Trattner.
\newblock Main degradation mechanisms of polymer electrolyte membrane fuel cell
stacks--mechanisms, influencing factors, consequences, and mitigation
strategies.
\newblock \emph{International Journal of Hydrogen Energy}, 50:\penalty0
1159--1182, 2024.

\bibitem[Takei et~al.(2016)Takei, Kakinuma, Kawashima, Tashiro, Watanabe, and
Uchida]{takei2016}
C.~Takei, K.~Kakinuma, K.~Kawashima, K.~Tashiro, M.~Watanabe, and M.~Uchida.
\newblock Load cycle durability of a graphitized carbon black-supported
platinum catalyst in polymer electrolyte fuel cell cathodes.
\newblock \emph{Journal of Power Sources}, 324:\penalty0 729--737, 2016.
\newblock \doi{10.1016/j.jpowsour.2016.05.117}.

\bibitem[Pavli{\v{s}}i{\v{c}} et~al.(2018)Pavli{\v{s}}i{\v{c}},
Jovanovi{\v{c}}, {\v{S}}elih, {\v{S}}ala, Hodnik, and
Gaber{\v{s}}{\v{c}}ek]{pavlivsivc2018platinum}
Andra{\v{z}} Pavli{\v{s}}i{\v{c}}, Primo{\v{z}} Jovanovi{\v{c}}, Vid~Simon
{\v{S}}elih, Martin {\v{S}}ala, Nejc Hodnik, and Miran Gaber{\v{s}}{\v{c}}ek.
\newblock Platinum dissolution and redeposition from pt/c fuel cell
electrocatalyst at potential cycling.
\newblock \emph{Journal of The Electrochemical Society}, 165\penalty0
(6):\penalty0 F3161--F3165, 2018.

\bibitem[Okonkwo et~al.(2021{\natexlab{b}})Okonkwo, Ige, Uzoma, Emori, Benamor,
Abdullah, et~al.]{okonkwo2021platinum}
Paul~C Okonkwo, Oladeji~O Ige, Paul~C Uzoma, Wilfred Emori, Abdelbaki Benamor,
Aboubakr~M Abdullah, et~al.
\newblock Platinum degradation mechanisms in proton exchange membrane fuel cell
(pemfc) system: A review.
\newblock \emph{International journal of hydrogen energy}, 46\penalty0
(29):\penalty0 15850--15865, 2021{\natexlab{b}}.

\bibitem[Park et~al.(2016)Park, Tokiwa, Kakinuma, Watanabe, and
Uchida]{park2016effects}
Young-Chul Park, Haruki Tokiwa, Katsuyoshi Kakinuma, Masahiro Watanabe, and
Makoto Uchida.
\newblock Effects of carbon supports on pt distribution, ionomer coverage and
cathode performance for polymer electrolyte fuel cells.
\newblock \emph{Journal of Power Sources}, 315:\penalty0 179--191, 2016.

\bibitem[Zhao et~al.(2021)Zhao, Tu, and Chan]{zhao2021carbon}
Junjie Zhao, Zhengkai Tu, and Siew~Hwa Chan.
\newblock Carbon corrosion mechanism and mitigation strategies in a proton
exchange membrane fuel cell (pemfc): A review.
\newblock \emph{Journal of Power Sources}, 488:\penalty0 229434, 2021.

\bibitem[Lin et~al.(2015)Lin, Cui, Shan, T{\'e}cher, Xiong, and
Zhang]{lin2015investigating}
R~Lin, X~Cui, J~Shan, L~T{\'e}cher, F~Xiong, and Q~Zhang.
\newblock Investigating the effect of start-up and shut-down cycles on the
performance of the proton exchange membrane fuel cell by segmented cell
technology.
\newblock \emph{International Journal of Hydrogen Energy}, 40\penalty0
(43):\penalty0 14952--14962, 2015.

\bibitem[Ohma et~al.(2008)Ohma, Yamamoto, and Shinohara]{ohma2008}
A.~Ohma, S.~Yamamoto, and K.~Shinohara.
\newblock Membrane degradation mechanism during open-circuit voltage hold test.
\newblock \emph{Journal of Power Sources}, 182\penalty0 (1):\penalty0 39--47,
2008.
\newblock \doi{10.1016/j.jpowsour.2008.03.031}.

\bibitem[Matsutani et~al.(2010)Matsutani, Hayakawa, and Tada]{matsutani2010}
K.~Matsutani, K.~Hayakawa, and T.~Tada.
\newblock Effect of particle size of platinum and platinum-cobalt catalysts on
stability against load cycling.
\newblock \emph{Platinum Metals Review}, 54:\penalty0 223--232, 2010.

\bibitem[Ren et~al.(2022)Ren, Pei, Chen, Zhang, Li, Song, Wang, and
Wang]{Corr_ren2022corrosion}
Peng Ren, Pucheng Pei, Dongfang Chen, Lu~Zhang, Yuehua Li, Xin Song, Mingkai
Wang, and He~Wang.
\newblock Corrosion of metallic bipolar plates accelerated by operating
conditions in a simulated pem fuel cell cathode environment.
\newblock \emph{Renewable Energy}, 194:\penalty0 1277--1287, 2022.

\bibitem[Kumagai et~al.(2012)Kumagai, Myung, Ichikawa, Yashiro, and
Katada]{Corr_kumagai2012high}
Masanobu Kumagai, Seung-Taek Myung, Takuma Ichikawa, Hitoshi Yashiro, and
Yasuyuki Katada.
\newblock High voltage retainable ni-saving high nitrogen stainless steel
bipolar plates for proton exchange membrane fuel cells: Phenomena and
mechanism.
\newblock \emph{Journal of Power Sources}, 202:\penalty0 92--99, 2012.

\bibitem[Mele and Bozzini(2010)]{Corr_mele2010localised}
Claudio Mele and Benedetto Bozzini.
\newblock Localised corrosion processes of austenitic stainless steel bipolar
plates for polymer electrolyte membrane fuel cells.
\newblock \emph{Journal of Power Sources}, 195\penalty0 (11):\penalty0
3590--3596, 2010.

\end{thebibliography}

+ 73
- 0
2024_MA_Platteau.blg Просмотреть файл

@@ -0,0 +1,73 @@
This is BibTeX, Version 0.99d (TeX Live 2022)
Capacity: max_strings=200000, hash_size=200000, hash_prime=170003
The top-level auxiliary file: 2024_MA_Platteau.aux
A level-1 auxiliary file: Content/TitlePage_LES.aux
The style file: unsrtnat.bst
Database file #1: Bibliography.bib
Warning--entry type for "01_ipcc_sr15_2018" isn't style-file defined
--line 7 of file Bibliography.bib
Warning--entry type for "01_E_klimaschutzgesetz" isn't style-file defined
--line 29 of file Bibliography.bib
Warning--entry type for "01_umweltbundesamt_treibhausgas_eu" isn't style-file defined
--line 37 of file Bibliography.bib
Warning--entry type for "01_ipcc_ar6_wg1_2021" isn't style-file defined
--line 45 of file Bibliography.bib
Warning--entry type for "01_umweltbundesamt_verkehr_emissionen" isn't style-file defined
--line 53 of file Bibliography.bib
Warning--entry type for "01_destatis_co2_strassenverkehr" isn't style-file defined
--line 61 of file Bibliography.bib
Warning--entry type for "01_un_climatechange_causes_2023" isn't style-file defined
--line 69 of file Bibliography.bib
I was expecting a `,' or a `}'---line 193 of file Bibliography.bib
:
: note = {page = 4},
(Error may have been on previous line)
I'm skipping whatever remains of this entry
Repeated entry---line 716 of file Bibliography.bib
: @article{ren2020degradation
: ,
I'm skipping whatever remains of this entry
Warning--empty journal in 02_baroutaji2015materials
Warning--empty journal in PEM_baroutaji2015materials
You've used 86 entries,
2481 wiz_defined-function locations,
1097 strings with 24049 characters,
and the built_in function-call counts, 36994 in all, are:
= -- 3059
> -- 2256
< -- 29
+ -- 855
- -- 677
* -- 3197
:= -- 6090
add.period$ -- 318
call.type$ -- 86
change.case$ -- 170
chr.to.int$ -- 80
cite$ -- 88
duplicate$ -- 1617
empty$ -- 3151
format.name$ -- 777
if$ -- 7664
int.to.chr$ -- 7
int.to.str$ -- 87
missing$ -- 77
newline$ -- 495
num.names$ -- 260
pop$ -- 641
preamble$ -- 1
purify$ -- 86
quote$ -- 0
skip$ -- 904
stack$ -- 0
substring$ -- 1973
swap$ -- 219
text.length$ -- 5
text.prefix$ -- 0
top$ -- 0
type$ -- 593
warning$ -- 2
while$ -- 302
width$ -- 0
write$ -- 1228
(There were 2 error messages)

+ 14
- 0
2024_MA_Platteau.lof Просмотреть файл

@@ -0,0 +1,14 @@
\babel@toc {english}{}\relax
\babel@toc {english}{}\relax
\addvspace {10\p@ }
\addvspace {10\p@ }
\contentsline {figure}{\numberline {2.1}{\ignorespaces Components of a PEMFC cell and its position in a fuel cell stack. Retrieved from Xu et al. page 816 [33].\relax }}{7}{figure.caption.43}%
\contentsline {figure}{\numberline {2.2}{\ignorespaces Chemical structure of PFSA also called Nafion. Retrieved from Chen et al., page 1436 (1) [59]\relax }}{11}{figure.caption.54}%
\contentsline {figure}{\numberline {2.3}{\ignorespaces Polarization curve of a fuel cell including the different losses. Retrieved from Jung et al., page 741 (4) [64].\relax }}{12}{figure.caption.58}%
\contentsline {figure}{\numberline {2.4}{\ignorespaces Example of a polarization curve of a PEMFC after different numbers of voltage cycles (VC) . Retrieved from Mohsin et al., page 24096 (4) [69].\relax }}{14}{figure.caption.70}%
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\providecommand \tocbasic@end@toc@file {}\tocbasic@end@toc@file

+ 1796
- 0
2024_MA_Platteau.log
Разница между файлами не показана из-за своего большого размера
Просмотреть файл


+ 12
- 0
2024_MA_Platteau.lot Просмотреть файл

@@ -0,0 +1,12 @@
\babel@toc {english}{}\relax
\babel@toc {english}{}\relax
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\contentsline {table}{\numberline {3.1}{\ignorespaces Temperatures of the cell\relax }}{19}{table.caption.91}%
\contentsline {table}{\numberline {3.2}{\ignorespaces Temperatures of the cell\relax }}{19}{table.caption.94}%
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\addvspace {10\p@ }
\providecommand \tocbasic@end@toc@file {}\tocbasic@end@toc@file

+ 0
- 0
2024_MA_Platteau.out Просмотреть файл


+ 75
- 0
2024_MA_Platteau.tex Просмотреть файл

@@ -0,0 +1,75 @@
%%% Main Document

\input{Praeambel} % settings

\begin{document} % beginning of the document

\hypersetup{
pdftitle={Template}, % insert title of the thesis
pdfsubject={Thesis}, % Bachelor`s Thesis, Research Internship, Master's Thesis
pdfauthor={First Name Last Name}, % insert your name
pdfkeywords={Key Words} % insert key words
}

\include{Content/TitlePage_LES} % including the title page for LES students
%\include{Content/TitlePage_ZAE} % including the title page for ZAE students

\newpage\thispagestyle{empty}\mbox{}\newpage % including a blank page
\pagenumbering{Roman} % page numbering with large roman numerals

\input{Content/StatutoryDeclaration} % including the statutory declaration
\cleardoublepage % page break after the statutory declaration

%\input{Content/Acknowledgements} % including the acknowledgements
%\cleardoublepage % page break after the acknowledgements

\input{Content/Abstract} % including the abstract
\cleardoublepage % page break after the abstract

\pdfbookmark[0]{\contentsname}{chap:toc} % adds the table of contents to the bookmark bar of the generated PDF
\tableofcontents % including the table of contents
\cleardoublepage % page break after the table of contents

\listoffigures % including the list of figures
\cleardoublepage % page break after the list of figures

\listoftables % including the list of tables
\cleardoublepage % page break after the list of tables

\input{Content/Abbreviations} % including the abbreviations
\cleardoublepage % page break after the abbreviations

\input{Content/Notation} % including the notation
\cleardoublepage % page break after the notation

\pagenumbering{arabic} % page numbering with large arabic numerals

\input{Content/Introduction} % including the introduction
\cleardoublepage % page break after the introduction

\input{Content/Theoretical Background} % including the main section
\cleardoublepage % page break after the main section

\input{Content/Method} % including the main section
\cleardoublepage % page break after the main section

\input{Content/Results and Discussion} % including the main section
\cleardoublepage % page break after the main section

\input{Content/SummaryAndOutlook} % including the summary and outlook
\cleardoublepage % page break after the summary and outlook

\interlinepenalty 10000 % prevents a page break in the bibliography within an entry

%\bibliographystyle{dinatles} % modification of the "dinat" style for the LES
\bibliographystyle{unsrtnat} % numerical citation
%\bibliographystyle{english_dinatles} % good style if your thesis is in english

\bibliography{Bibliography} % including the bibliography
\cleardoublepage % page break after the bibliography

\appendix % change document to appendix
\input{Content/Appendix} % including the appendix
%\clearpage % page break after the appendix

\end{document} % end of the document

+ 74
- 0
2024_MA_Platteau.toc Просмотреть файл

@@ -0,0 +1,74 @@
\babel@toc {english}{}\relax
\babel@toc {english}{}\relax
\contentsline {chapter}{\nonumberline List of Figures}{VII}{chapter*.4}%
\contentsline {chapter}{\nonumberline List of Tables}{IX}{chapter*.5}%
\contentsline {chapter}{Abbreviations}{XI}{chapter*.6}%
\contentsline {chapter}{Notation}{XIII}{chapter*.7}%
\contentsline {chapter}{\numberline {1}Introduction}{1}{chapter.8}%
\contentsline {section}{\numberline {1.1}Motivation}{1}{section.9}%
\contentsline {section}{\numberline {1.2}Problem Statement}{2}{section.10}%
\contentsline {section}{\numberline {1.3}Outline of the Thesis}{2}{section.15}%
\contentsline {chapter}{\numberline {2}Theoretical Background}{3}{chapter.16}%
\contentsline {section}{\numberline {2.1}Fundamentals of the Fuel Cell}{3}{section.17}%
\contentsline {subsubsection}{\nonumberline Solid Oxide Fuel Cells (SOFCs)}{3}{subsubsection*.19}%
\contentsline {subsubsection}{\nonumberline Molten Carbonate Fuel Cells (MCFCs)}{4}{subsubsection*.23}%
\contentsline {subsubsection}{\nonumberline Alkaline Fuel Cells (AFCs)}{4}{subsubsection*.25}%
\contentsline {subsubsection}{\nonumberline Polymer Electrolyte Membrane Fuel Cells (PEMFCs)}{5}{subsubsection*.28}%
\contentsline {section}{\numberline {2.2}Electrochemical Fundamentals}{5}{section.29}%
\contentsline {subsection}{\numberline {2.2.1}Thermodynamics of the Cell}{5}{subsection.33}%
\contentsline {section}{\numberline {2.3}PEMFC}{7}{section.41}%
\contentsline {subsection}{\numberline {2.3.1}Way of Function PEMFCs}{7}{subsection.42}%
\contentsline {subsubsection}{\nonumberline Bipolar Plate (BP)}{8}{subsubsection*.45}%
\contentsline {subsubsection}{\nonumberline Membrane Electrode Assembly (MEA)}{8}{subsubsection*.47}%
\contentsline {subsubsection}{\nonumberline Gas Diffusion Layer (GDL)}{9}{subsubsection*.49}%
\contentsline {subsubsection}{\nonumberline Catalyst Layer (CT)}{9}{subsubsection*.51}%
\contentsline {subsubsection}{\nonumberline Proton Exchange Membrane (PEM)}{10}{subsubsection*.53}%
\contentsline {subsection}{\numberline {2.3.2}Department of Energy Targets}{11}{subsection.56}%
\contentsline {subsection}{\numberline {2.3.3}Overpotentials of the PEMFC}{11}{subsection.57}%
\contentsline {subsubsection}{\nonumberline Activation Polarization}{12}{subsubsection*.60}%
\contentsline {subsubsection}{\nonumberline Ohmic Polarization}{13}{subsubsection*.64}%
\contentsline {subsubsection}{\nonumberline Concentration Polarization}{13}{subsubsection*.67}%
\contentsline {subsection}{\numberline {2.3.4}Characterization of PEMFC}{13}{subsection.69}%
\contentsline {section}{\numberline {2.4}Degradation Mechanisms}{14}{section.71}%
\contentsline {subsection}{\numberline {2.4.1}Platinum Catalyst Dissolution and Agglomeration}{15}{subsection.72}%
\contentsline {subsection}{\numberline {2.4.2}Electrochemical Carbon Corrosion}{16}{subsection.76}%
\contentsline {subsection}{\numberline {2.4.3}Membrane Degradation}{17}{subsection.80}%
\contentsline {subsection}{\numberline {2.4.4}Corrosion}{17}{subsection.81}%
\contentsline {chapter}{\numberline {3}Method}{19}{chapter.82}%
\contentsline {section}{\numberline {3.1}Modelation of Corrosion Mechanism}{19}{section.83}%
\contentsline {section}{\numberline {3.2}Material Characterization of Substrate}{19}{section.84}%
\contentsline {subsection}{\numberline {3.2.1}Potentiostatic Measurements}{19}{subsection.85}%
\contentsline {subsection}{\numberline {3.2.2}Potentiodynamic Measurements}{19}{subsection.86}%
\contentsline {section}{\numberline {3.3}Experimental Setup of Endurance Run}{19}{section.87}%
\contentsline {subsection}{\numberline {3.3.1}Testbench}{19}{subsection.88}%
\contentsline {subsection}{\numberline {3.3.2}Characterization of Cells}{19}{subsection.89}%
\contentsline {subsection}{\numberline {3.3.3}pH Measurement}{19}{subsection.90}%
\contentsline {subsection}{\numberline {3.3.4}Development of Endurance Run}{19}{subsection.92}%
\contentsline {subsection}{\numberline {3.3.5}Characterization of the Endurance Run}{19}{subsection.93}%
\contentsline {section}{\numberline {3.4}Ex-Situ analysis}{20}{section.95}%
\contentsline {subsection}{\numberline {3.4.1}Laser Induced Breakdown Spectroscopy(LIBS)}{20}{subsection.96}%
\contentsline {subsection}{\numberline {3.4.2}Energy Dispersive X-Ray Spectroscopy (EDX)}{20}{subsection.97}%
\contentsline {subsection}{\numberline {3.4.3}Scanning Electrone Microscope (SEM)}{20}{subsection.98}%
\contentsline {subsection}{\numberline {3.4.4}Inductively Coupled Plasma Spectroscopy (ICP)}{20}{subsection.99}%
\contentsline {chapter}{\numberline {4}Results and Discussion}{21}{chapter.100}%
\contentsline {section}{\numberline {4.1}Material Characterization of SS316L}{21}{section.101}%
\contentsline {subsubsection}{\nonumberline Corrosion Parameters}{21}{subsubsection*.103}%
\contentsline {subsubsection}{\nonumberline Department of Energy Target}{21}{subsubsection*.105}%
\contentsline {section}{\numberline {4.2}pH Measurement}{21}{section.106}%
\contentsline {section}{\numberline {4.3}Endurance Run}{21}{section.107}%
\contentsline {subsubsection}{\nonumberline Polarization Curves}{21}{subsubsection*.109}%
\contentsline {subsubsection}{\nonumberline Effects of Relative Humidity in the Air}{21}{subsubsection*.111}%
\contentsline {subsection}{\numberline {4.3.1}Product Water Analysis}{21}{subsection.112}%
\contentsline {section}{\numberline {4.4}Ex-Situ Analysis}{21}{section.113}%
\contentsline {subsection}{\numberline {4.4.1}LIBS Measurement}{21}{subsection.114}%
\contentsline {subsection}{\numberline {4.4.2}EDX Measurement}{21}{subsection.115}%
\contentsline {subsection}{\numberline {4.4.3}SEM Measurement}{21}{subsection.116}%
\contentsline {subsection}{\numberline {4.4.4}ICP Measurement}{21}{subsection.117}%
\contentsline {chapter}{\numberline {5}Summary and Outlook}{23}{chapter.118}%
\contentsline {section}{\numberline {5.1}Summary}{23}{section.119}%
\contentsline {section}{\numberline {5.2}Outlook}{23}{section.120}%
\contentsline {chapter}{\nonumberline Bibliography}{25}{chapter*.121}%
\contentsline {chapter}{\numberline {A}Appendix}{33}{appendix.122}%
\contentsline {section}{\numberline {A.1}First Appendix}{33}{section.123}%
\contentsline {section}{\numberline {A.2}Second Appendix}{33}{section.124}%
\providecommand \tocbasic@end@toc@file {}\tocbasic@end@toc@file

+ 983
- 0
Bibliography.bib Просмотреть файл

@@ -0,0 +1,983 @@
% This file was created with JabRef 2.6.
% Encoding: Cp1252

%Introduction


@online{01_ipcc_sr15_2018,
author = {{Intergovernmental Panel on Climate Change (IPCC)}},
title = {Global Warming of 1.5°C: An IPCC Special Report},
year = {2018},
url = {https://www.ipcc.ch/sr15/},
note = {Accessed: 2024-08-27},
}

@article{01_xu_ramanathan_2017,
title = {Well below 2$\degree$ C : Mitigation strategies for avoiding dangerous to catastrophic climate changes},
volume = {114},
issn = {0027-8424, 1091-6490},
url = {https://pnas.org/doi/full/10.1073/pnas.1618481114},
language = {en},
number = {39},
urldate = {2024-08-27},
journal = {Proceedings of the National Academy of Sciences},
author = {Xu, Yangyang and Ramanathan, Veerabhadran},
year = {2017},
note = {pages 10315--10323},
}

@online{01_E_klimaschutzgesetz,
author = {Federal Government of Germany},
title = {Ein Plan fürs Klima},
url = {https://www.bundesregierung.de/breg-de/themen/tipps-fuer-verbraucher/klimaschutzgesetz-2197410},
urldate = {2024-08-26},
note = {Accessed: 2024-08-26},
year = {2024},
}
@online{01_umweltbundesamt_treibhausgas_eu,
author = {Umweltbundesamt},
title = {Treibhausgas-Emissionen in der Europäischen Union: Trends},
year = {2024},
url = {https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-in-der-europaeischen-union#trends},
note = {Accessed: 2024-08-27},
}

@online{01_ipcc_ar6_wg1_2021,
author = {Intergovernmental Panel on Climate Change (IPCC)},
title = {IPCC AR6 Working Group I Summary for Policymakers},
year = {2021},
url = {https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf},
note = {pages 6-7, Accessed: 2024-08-27},
}

@online{01_umweltbundesamt_verkehr_emissionen,
author = {Umweltbundesamt},
title = {Emissionen des Verkehrs: Verkehr belastet Luft und Klima - Minderungsziele der Bundesregierung},
year = {2024},
url = {https://www.umweltbundesamt.de/daten/verkehr/emissionen-des-verkehrs#verkehr-belastet-luft-und-klima-minderungsziele-der-bundesregierung},
note = {Accessed: 2024-08-27},
}

@online{01_destatis_co2_strassenverkehr,
author = {Statistisches Bundesamt (Destatis)},
title = {CO2-Emissionen im Straßenverkehr in Europa},
year = {2024},
url = {https://www.destatis.de/Europa/DE/Thema/Umwelt-Energie/CO2_Strassenverkehr.html},
note = {Accessed: 2024-08-27},
}

@online{01_un_climatechange_causes_2023,
author = {United Nations},
title = {Causes and Effects of Climate Change},
year = {2023},
url = {https://www.un.org/en/climatechange/science/causes-effects-climate-change},
note = {Accessed: 2024-08-27},
}

@article{01_wilberforce_advances_2016,
title = {Advances in stationary and portable fuel cell applications},
volume = {41},
issn = {03603199},
url = {https://linkinghub.elsevier.com/retrieve/pii/S0360319915315822},
doi = {10.1016/j.ijhydene.2016.02.057},
number = {37},
urldate = {2024-08-26},
journal = {International Journal of Hydrogen Energy},
author = {Wilberforce, Tabbi and Alaswad, A. and Palumbo, A. and Dassisti, M. and Olabi, A.G.},
month = oct,
year = {2016},
pages = {16509--16522},
}

@article{01_wilberforce_developments_2017,
title = {Developments of electric cars and fuel cell hydrogen electric cars},
volume = {42},
issn = {03603199},
url = {https://linkinghub.elsevier.com/retrieve/pii/S036031991732791X},
doi = {10.1016/j.ijhydene.2017.07.054},
language = {en},
number = {40},
urldate = {2024-08-26},
journal = {International Journal of Hydrogen Energy},
author = {Wilberforce, Tabbi and El-Hassan, Zaki and Khatib, F.N. and Al Makky, Ahmed and Baroutaji, Ahmad and Carton, James G. and Olabi, Abdul G.},
month = oct,
year = {2017},
pages = {25695--25734},
file = {Wilberforce et al. - 2017 - Developments of electric cars and fuel cell hydrog.pdf:/Users/mauricioplatteau/Zotero/storage/FBA6BL6V/Wilberforce et al. - 2017 - Developments of electric cars and fuel cell hydrog.pdf:application/pdf},
}
@article{wang_preparation_2018,
title = {Preparation and performances of electrically conductive {Nb}-doped {TiO2} coatings for 316 stainless steel bipolar plates of proton-exchange membrane fuel cells},
volume = {142},
issn = {0010938X},
url = {https://linkinghub.elsevier.com/retrieve/pii/S0010938X17317900},
doi = {10.1016/j.corsci.2018.07.034},
language = {en},
urldate = {2024-08-26},
journal = {Corrosion Science},
author = {Wang, Yanli and Zhang, Shenghua and Lu, Zhaoxia and Wang, Lisheng and Li, Weihua},
month = sep,
year = {2018},
pages = {249--257},
annote = {Siehe kosten
The bipolar plate accounts for 80\% of weight and 45\% cost of the stack manufacturing cost
},
}
@article{elferjani_coupling_2021,
title = {A coupling approach between metallic bipolar plates corrosion and membrane chemical degradation in the proton exchange membrane fuel cells},
volume = {46},
issn = {03603199},
url = {https://linkinghub.elsevier.com/retrieve/pii/S0360319921025039},
doi = {10.1016/j.ijhydene.2021.06.215},
language = {en},
number = {63},
urldate = {2024-08-23},
journal = {International Journal of Hydrogen Energy},
author = {Elferjani, I. and Serre, G. and Ter-Ovanessian, B. and Normand, B.},
month = sep,
year = {2021},
pages = {32226--32241},
file = {Elferjani et al. - 2021 - A coupling approach between metallic bipolar plate.pdf:/Users/mauricioplatteau/Zotero/storage/GA5CAQMU/Elferjani et al. - 2021 - A coupling approach between metallic bipolar plate.pdf:application/pdf},
}
@online{E_un_climate_change,
author = {{United Nations}},
title = {Causes and Effects of Climate Change},
url = {https://www.un.org/en/climatechange/science/causes-effects-climate-change},
urldate = {05.05.2024},
year = {2023},
note = {Accessed: 2024-08-27},
}

%Theoretical background

@article{02_baroutaji2015materials,
title={Materials in PEM fuel cells},
author={Baroutaji, Ahmad and Carton, JG and Sajjia, Mustafa and Olabi, Abdul Ghani},
year={2015},
publisher={Elsevier}
}
@article{02_lucia2014overview,
title={Overview on fuel cells},
author={Lucia, Umberto},
journal={Renewable and Sustainable Energy Reviews},
volume={30},
pages={164--169},
year={2014},
publisher={Elsevier},
note = {pages 164-169},
}
@article{02_wang2020fundamentals,
title={Fundamentals, materials, and machine learning of polymer electrolyte membrane fuel cell technology},
author={Wang, Yun and Seo, Bongjin and Wang, Bowen and Zamel, Nada and Jiao, Kui and Adroher, Xavier Cordobes},
journal={Energy and AI},
volume={1},
pages={100014},
year={2020},
publisher={Elsevier},
note = {page 100014}
}
@book{02_Abderezzak2018,
author = {B. Abderezzak},
title = {Introduction to Transfer Phenomena in PEM Fuel Cells},
year = {2018},
edition = {1st},
publisher = {Elsevier},
note = {page = 16}
}
@phdthesis{SOFC_hauser2021effects,
title={Effects of Tars on Solid Oxide Fuel Cells},
author={Hauser, Michael Maximilian},
year={2021},
school={Technische Universit{\"a}t M{\"u}nchen}
note = {page = 4},
}
@article{SOFC_lin_analysis_2024,
title = {Analysis on temperature uniformity in methane-rich internal reforming solid oxide fuel cells ({SOFCs})},
volume = {57},
issn = {03603199},
url = {https://linkinghub.elsevier.com/retrieve/pii/S0360319924000831},
doi = {10.1016/j.ijhydene.2024.01.071},
language = {en},
urldate = {2024-09-02},
journal = {International Journal of Hydrogen Energy},
author = {Lin, Chen and Kerscher, Florian and Herrmann, Stephan and Steinrücken, Benjamin and Spliethoff, Hartmut},
month = feb,
year = {2024},
note= {pages 769--788},
}
@article{SOFC_Haberman2004,
author = {B. A. Haberman and J. B. Young},
title = {Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell},
journal = {International Journal of Heat and Mass Transfer},
year = {2004},
volume = {47},
number = {17},
pages = {3617--3629},
doi = {10.1016/j.ijheatmasstransfer.2004.03.009}
}

@techreport{SOFC_WGS_Buttler2016,
author = {A. Buttler and H. Spliethoff},
title = {Kampf der Studien},
institution = {Lehrstuhl für Energiesysteme},
year = {2016},
type = {Technical report},
}

@article{MCFS_cui2021review,
title={Review of molten carbonate-based direct carbon fuel cells},
author={Cui, Can and Li, Shuangbin and Gong, Junyi and Wei, Keyan and Hou, Xiangjun and Jiang, Cairong and Yao, Yali and Ma, Jianjun},
journal={Materials for Renewable and Sustainable Energy},
volume={10},
pages={1--24},
year={2021},
publisher={Springer}
}
@article{MCFScontreras2021molten,
title={Molten carbonate fuel cells: a technological perspective and review},
author={Contreras, Ricardo R and Almarza, Jorge and Rinc{\'o}n, Luis},
journal={Energy Sources, Part A: Recovery, Utilization, and Environmental Effects},
pages={1--15},
year={2021},
publisher={Taylor \& Francis}
}

@article{AFC_mclean2002assessment,
title={An assessment of alkaline fuel cell technology},
author={McLean, GF and Niet, T and Prince-Richard, S and Djilali, N},
journal={International Journal of Hydrogen Energy},
volume={27},
number={5},
pages={507--526},
year={2002},
publisher={Elsevier},
note = {page 513},
}

@article{AFC_AlSaleh1994_CO2,
author = {Al-Saleh, M.A. and Gultekin, S. and Al-Zakri, A.S. and Celiker, H.},
title = {Effect of carbon dioxide on the performance of Ni=PTFE and Ag=PTFE electrodes in an alkaline fuel cell},
journal = {Journal of Applied Electrochemistry},
year = {1994},
volume = {24},
pages = {575--580},
notes = {pages 575--580}
}

@article{AFC_AlSaleh1994_Ni,
author = {Al-Saleh, M.A. and Gultekin, S. and Al-Zakri, A.S. and Celiker, H.},
title = {Performance of porous nickel electrode for alkaline H2=O2 fuel cell},
journal = {International Journal of Hydrogen Energy},
year = {1994},
volume = {19},
pages = {713--718},
notes = {pages 713--718}
}

@article{PEM_Atuomotive_arrigoni2022greenhouse,
title={Greenhouse Gas Implications of Extending the Service Life of PEM Fuel Cells for Automotive Applications: A Life Cycle Assessment},
author={Arrigoni, Alessandro and Arosio, Valeria and Basso Peressut, Andrea and Latorrata, Saverio and Dotelli, Giovanni},
journal={Clean Technologies},
volume={4},
number={1},
pages={132--148},
year={2022},
publisher={MDPI}
}

@book{Fundamentals_o2016fuel,
title={Fuel cell fundamentals},
author={O'hayre, Ryan and Cha, Suk-Won and Colella, Whitney and Prinz, Fritz B},
year={2016},
publisher={John Wiley \& Sons}
}
@incollection{Fundamentals_scherer2012fuel,
title={Fuel cell types and their electrochemistry},
author={Scherer, Günther G},
booktitle={Fuel Cells: Selected Entries from the Encyclopedia of Sustainability Science and Technology},
pages={97--119},
year={2012},
publisher={Springer},
notes = {pages 97--119},
}
@incollection{Fund_barbir2008fuel,
title={Fuel cell basic chemistry, electrochemistry and thermodynamics},
author={Barbir, Frano},
booktitle={Mini-Micro Fuel Cells: Fundamentals and Applications},
pages={13--26},
year={2008},
publisher={Springer}
}

@book{Fundamentals_kurzweil2013brennstoffzellentechnik,
title={Brennstoffzellentechnik},
author={Kurzweil, Peter},
year={2013},
publisher={Springer}
}
@article{F_omran2021mathematical,
title={Mathematical model of a proton-exchange membrane (PEM) fuel cell},
author={Omran, Abdelnasir and Lucchesi, Alessandro and Smith, David and Alaswad, Abed and Amiri, Amirpiran and Wilberforce, Tabbi and Sodr{\'e}, Jos{\'e} Ricardo and Olabi, AG},
journal={International Journal of Thermofluids},
volume={11},
pages={100110},
year={2021},
publisher={Elsevier}
}
@article{Nernst_sahu2014performance,
title={Performance study of PEM fuel cell under different loading conditions},
author={Sahu, Ishwar Prasad and Krishna, Gali and Biswas, Manojit and Das, Mihir Kumar},
journal={Energy Procedia},
volume={54},
pages={468--478},
year={2014},
publisher={Elsevier}
}
@article{Nernst_mardle2021examination,
title={An examination of the catalyst layer contribution to the disparity between the Nernst potential and open circuit potential in proton exchange membrane fuel cells},
author={Mardle, Peter and Cerri, Isotta and Suzuki, Toshiyuki and El-Kharouf, Ahmad},
journal={Catalysts},
volume={11},
number={8},
pages={965},
year={2021},
publisher={MDPI}
}
@book{Fundamentals_klell2018wasserstoff,
title={Wasserstoff in der Fahrzeugtechnik: erzeugung, speicherung, anwendung},
author={Klell, Manfred and Eichlseder, Helmut and Trattner, Alexander},
year={2018},
publisher={Springer-Verlag}
}



%PEM

@article{PEMSchem_xu2020towards,
title={Towards mass applications: A review on the challenges and developments in metallic bipolar plates for PEMFC},
author={Xu, Zhutian and Qiu, Diankai and Yi, Peiyun and Peng, Linfa and Lai, Xinmin},
journal={Progress in natural science: materials international},
volume={30},
number={6},
pages={815--824},
year={2020},
publisher={Elsevier}
}

@article{PEM_khosravi2021electrochemical,
title={Electrochemical aspects of interconnect materials in PEMFCs},
author={Khosravi, Saman and Abbas, Qamar and Reichmann, Klaus},
journal={International Journal of Hydrogen Energy},
volume={46},
number={71},
pages={35420--35447},
year={2021},
publisher={Elsevier}
}

@article{PEM_baroutaji2015materials,
title={Materials in PEM fuel cells},
author={Baroutaji, Ahmad and Carton, JG and Sajjia, Mustafa and Olabi, Abdul Ghani},
year={2015},
publisher={Elsevier},
pages = {4-11},
}
@article{antunes2010,
title={Corrosion of metal bipolar plates for PEM fuel cells: A review},
author={Antunes, R.A. and Oliveira, M.C.L. and Ett, G. and Ett, V.},
journal={International Journal of Hydrogen Energy},
volume={35},
number={8},
pages={3632--3647},
year={2010},
publisher={Elsevier},
doi={10.1016/j.ijhydene.2010.01.059}
}

@article{Automotive_leng2020,
title={J. Power Sources 451 (2020) 227783},
author={Leng, Y. and Ming, P. and Yang, D. and Zhang, C.},
journal={Journal of Power Sources},
volume={451},
pages={227783},
year={2020},
publisher={Elsevier},
doi={10.1016/j.jpowsour.2019.227783}
}

@misc{doe_pemfc_targets,
author = {{U.S. Department of Energy}},
title = {DOE Technical Targets for Polymer Electrolyte Membrane Fuel Cell Components},
year = 2024,
url = {https://www.energy.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components},
note = {Accessed: 2024-09-16}
}
@article{SSweight_li2005review,
title={Review of bipolar plates in PEM fuel cells: Flow-field designs},
author={Li, Xianguo and Sabir, Imad},
journal={International Journal of Hydrogen Energy},
volume={30},
number={4},
pages={359--371},
year={2005},
publisher={Elsevier},
doi={10.1016/j.ijhydene.2004.09.019}
}
@misc{bmw_hydrogen_2024,
author = {{BMW Group}},
title = {Hydrogen as a Drive Technology},
year = 2024,
url = {https://www.bmwgroup.com/en/innovation/drive-technologies/hydrogen.html},
note = {Accessed: 2024-09-16}
}

@misc{toyota_technical_review_2021,
author = {{Toyota Motor Corporation}},
title = {Toyota Technical Review, Vol. 66},
year = 2021,
url = {https://global.toyota/pages/global_toyota/mobility/technology/toyota-technical-review/TTR_Vol66_E.pdf},
pages={26},
note = {Accessed: 2024-09-16}
}

@article{eom2012,
title={Degradation behavior of a polymer electrolyte membrane fuel cell employing metallic bipolar plates under reverse current condition},
author={Eom, K. and Cho, E. and Nam, S.-W. and Lim, T.-H. and Jang, J.H. and Kim, H.-J. and Hong, B.K. and Yang, Y.C.},
journal={Electrochimica Acta},
volume={78},
pages={324--330},
year={2012},
publisher={Elsevier},
doi={10.1016/j.electacta.2012.06.023}
}


@article{sulek2011,
title={Investigation of stainless steel bipolar plates for PEM fuel cells: Corrosion and contact resistance measurements},
author={Sulek, M. and Adams, J. and Kaberline, S. and Ricketts, M. and Waldecker, J.R.},
journal={Journal of Power Sources},
volume={196},
pages={8967--8972},
year={2011},
publisher={Elsevier},
doi={10.1016/j.jpowsour.2011.06.048}
}

@article{papadias2015degradation,
title={Degradation of SS316L bipolar plates in simulated fuel cell environment: Corrosion rate, barrier film formation kinetics and contact resistance},
author={Papadias, Dionissios D and Ahluwalia, Rajesh K and Thomson, Jeffery K and Meyer III, Harry M and Brady, Michael P and Wang, Heli and Turner, John A and Mukundan, Rangachary and Borup, Rod},
journal={Journal of Power Sources},
volume={273},
pages={1237--1249},
year={2015},
publisher={Elsevier}
}
@article{feng2011,
title={Degradation of polymer electrolyte membrane fuel cells with stainless steel bipolar plates},
author={Feng, K. and Wu, G.S. and Li, Z.G. and Cai, X. and Chu, P.K.},
journal={International Journal of Hydrogen Energy},
volume={36},
pages={13032--13042},
year={2011},
publisher={Elsevier},
doi={10.1016/j.ijhydene.2011.07.113}
}


%MEA

@article{MEA_lim2021comparison,
title={Comparison of catalyst-coated membranes and catalyst-coated substrate for PEMFC membrane electrode assembly: A review},
author={Lim, Bee Huah and Majlan, Edy Herianto and Tajuddin, Ahmad and Husaini, Teuku and Daud, Wan Ramli Wan and Radzuan, Nabilah Afiqah Mohd and Haque, Md Ahsanul},
journal={Chinese Journal of Chemical Engineering},
volume={33},
pages={1--16},
year={2021},
publisher={Elsevier}
}

@incollection{MEA_lapicque2012,
title={Analysis and Evaluation of Aging Phenomena in PEMFCs},
author={Lapicque, F. and Bonnet, C. and Huang, B.T. and Chatillon, Y.},
booktitle={Fuel Cell Engineering},
editor={Sundmacher, A.C.E.},
pages={265--330},
year={2012},
publisher={Elsevier},
address={Amsterdam}
}
@article{MEA_bhosale2020,
title={Preparation methods of membrane electrode assemblies for proton exchange membrane fuel cells and unitized regenerative fuel cells: A review},
author={Bhosale, A. C. and Ghosh, P. C. and Assaud, L.},
journal={Renewable and Sustainable Energy Reviews},
volume={133},
pages={110286},
year={2020},
doi={10.1016/j.rser.2020.110286}
}
@article{PEM_MEA_parekh2022recent,
title={Recent developments of proton exchange membranes for PEMFC: A review},
author={Parekh, Abhi},
journal={Frontiers in Energy Research},
volume={10},
pages={956132},
year={2022},
publisher={Frontiers Media SA}
}

@article{Pt_liew2014,
title={Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells: a review},
author={Liew, K. Ben and Daud, W.R.W. and Ghasemi, M. and Leong, J.X. and Lim, S. Su and Ismail, M.},
journal={International Journal of Hydrogen Energy},
volume={39},
number={10},
pages={4870--4883},
year={2014},
publisher={Elsevier},
doi={10.1016/j.ijhydene.2014.01.062}
}

@article{thiele2024realistic,
title={Realistic accelerated stress tests for PEM fuel cells: Test procedure development based on standardized automotive driving cycles},
author={Thiele, Paul and Yang, Yue and Dirkes, Steffen and Wick, Maximilian and Pischinger, Stefan},
journal={international journal of hydrogen energy},
volume={52},
pages={1065--1080},
year={2024},
publisher={Elsevier}
}
%GDL


@article{GDL_zamel2011,
title={Measurement of in-plane thermal conductivity of carbon paper diffusion media in the temperature range of -20 °C to +120 °C},
author={Zamel, N. and Litovsky, E. and Shakhshir, S. and others},
journal={Applied Energy},
volume={88},
pages={3042--3050},
year={2011},
doi={10.1016/j.apenergy.2011.02.008}
}

@article{ijaodola2019,
title={A review of polymer electrolyte membrane fuel cell models for application to automotive systems},
author={Ijaodola, O.S. and El-Hassan, Z. and Ogungbemi, E. and Khatib, F.N. and Wilberforce, T. and Thompson, J. and Olabi, A.G.},
journal={Energy},
volume={179},
pages={246--267},
year={2019},
doi={10.1016/j.energy.2019.03.126}
}

@article{majlan2018,
title={A review of polymer electrolyte membrane fuel cell (PEMFC) durability: Degradation mechanisms and mitigation strategies},
author={Majlan, E.H. and Rohendi, D. and Daud, W.R.W. and Husaini, T. and Haque, M.A.},
journal={Renewable and Sustainable Energy Reviews},
volume={89},
pages={117--134},
year={2018},
doi={10.1016/j.rser.2018.03.007}
}



%CT

@article{CT_malek2011,
title={Microstructure of catalyst layers in PEM fuel cells redefined: a computational approach},
author={Malek, K. and Mashio, T. and Eikerling, M.},
journal={Electrocatalysis},
volume={2},
number={2},
pages={141--157},
year={2011},
doi={10.1007/s12678-011-0047-0}
}
@article{hnat2019,
title={Development and testing of a novel catalyst-coated membrane with platinum-free catalysts for alkaline water electrolysis},
author={Hnát, J. and Plevova, M. and Tufa, R.A. and Zitka, J. and Paidar, M. and Bouzek, K.},
journal={International Journal of Hydrogen Energy},
volume={44},
pages={17493--17504},
year={2019},
doi={10.1016/j.ijhydene.2019.05.067}
}

@article{ink_zamel2016catalyst,
title={The catalyst layer and its dimensionality--A look into its ingredients and how to characterize their effects},
author={Zamel, Nada},
journal={Journal of Power Sources},
volume={309},
pages={141--159},
year={2016},
publisher={Elsevier}
}

%membrane


@article{ghassemzadeh2010chemical,
title={Chemical degradation of Nafion membranes under mimic fuel cell conditions as investigated by solid-state NMR spectroscopy},
author={Ghassemzadeh, Lida and Kreuer, Klaus-Dieter and Maier, Joachim and Muller, Klaus},
journal={The Journal of Physical Chemistry C},
volume={114},
number={34},
pages={14635--14645},
year={2010},
publisher={ACS Publications}
}
@book{zaidi2009polymer,
title={Polymer membranes for fuel cells},
author={Zaidi, SM Javaid and Matsuura, Takeshi},
year={2009},
publisher={Springer}
}


@article{okonkwo2021nafion,
title={Nafion degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review},
author={Okonkwo, Paul C and Belgacem, Ikram Ben and Emori, Wilfred and Uzoma, Paul C},
journal={International journal of hydrogen energy},
volume={46},
number={55},
pages={27956--27973},
year={2021},
publisher={Elsevier}
}

@article{Nafion_chen2009effect,
title={The effect of humidity on the degradation of Nafion{\textregistered} membrane},
author={Chen, Cheng and Fuller, Thomas F},
journal={Polymer Degradation and Stability},
volume={94},
number={9},
pages={1436--1447},
year={2009},
publisher={Elsevier}
}

@article{teranishi2006,
title={Degradation mechanism of PEMFC under open circuit operation},
author={Teranishi, K. and Kawata, K. and Tsushima, S. and Hirai, S.},
journal={Electrochemical and Solid-State Letters},
volume={9},
number={10},
pages={475--477},
year={2006},
doi={10.1149/1.2227524}
}

@article{ren2020degradation,
title={Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions},
author={Ren, Peng and Pei, Pucheng and Li, Yuehua and Wu, Ziyao and Chen, Dongfang and Huang, Shangwei},
journal={Progress in Energy and Combustion Science},
volume={80},
pages={100859},
year={2020},
publisher={Elsevier}
}
%losses

@article{Loss_mardle2021examination,
title={An examination of the catalyst layer contribution to the disparity between the Nernst potential and open circuit potential in proton exchange membrane fuel cells},
author={Mardle, Peter and Cerri, Isotta and Suzuki, Toshiyuki and El-Kharouf, Ahmad},
journal={Catalysts},
volume={11},
number={8},
pages={965},
year={2021},
publisher={MDPI}
}

@article{Loss_li2022new,
title={A new fuel cell degradation model indexed by proton exchange membrane thickness derived from polarization curve},
author={Li, Jianwei and Luo, Lei and Yang, Qingqing and Ma, Rui},
journal={IEEE Transactions on Transportation Electrification},
volume={9},
number={4},
pages={5061--5073},
year={2022},
publisher={IEEE}
}

@article{Loss_jung2010dynamic,
title={Dynamic model of PEM fuel cell using real-time simulation techniques},
author={Jung, Jee-Hoon and Ahmed, Shehab},
journal={Journal of Power Electronics},
volume={10},
number={6},
pages={739--748},
year={2010},
publisher={The Korean Institute of Power Electronics}
}
%equations in losses
@article{ren2020degradation,
title={Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions},
author={Ren, Peng and Pei, Pucheng and Li, Yuehua and Wu, Ziyao and Chen, Dongfang and Huang, Shangwei},
journal={Progress in Energy and Combustion Science},
volume={80},
pages={100859},
year={2020},
publisher={Elsevier}
}

@article{Loss_mazzeo2024assessing,
title={Assessing Open Circuit Voltage Losses in PEMFCs: A New Methodological Approach},
author={Mazzeo, Francesco and Di Napoli, Luca and Carello, Massimiliana},
journal={Energies},
volume={17},
number={11},
pages={2785},
year={2024},
publisher={MDPI}
}

%Activation loss



@article{jouin2016,
title={Degradations analysis and aging modeling for health assessment and prognostics of PEMFC},
author={Jouin, M. and Gouriveau, R. and Hissel, D. and Péra, M.-C. and Zerhouni, N.},
journal={Reliability Engineering \& System Safety},
volume={148},
pages={78--95},
year={2016},
doi={10.1016/j.ress.2015.12.003}
}

@article{springer1991,
title={Polymer Electrolyte Fuel Cell Model},
author={Springer, T.E. and Zawodzinski, T.A. and Gottesfeld, S.},
journal={Journal of The Electrochemical Society},
volume={138},
number={8},
pages={2334--2342},
year={1991},
doi={10.1149/1.2085971}
}
@article{liu2024study,
title={Study on the influence of the hydrogen--oxygen stoichiometric ratio on the power performance improvement in a large-scale PEMFC stack},
author={Liu, Qi and Zhao, Zijian and Fu, Weidong and Lin, Zhe and Zhu, Zuchao and Wang, Haifeng and Yuan, Yunchao},
journal={Journal of Power Sources},
volume={620},
pages={235279},
year={2024},
publisher={Elsevier}
}
%PolCurves
@article{mohsin2020electrochemical,
title={Electrochemical characterization of polymer electrolyte membrane fuel cells and polarization curve analysis},
author={Mohsin, Munazza and Raza, Rizwan and Mohsin-ul-Mulk, M and Yousaf, Abida and Hacker, Viktor},
journal={International Journal of Hydrogen Energy},
volume={45},
number={45},
pages={24093--24107},
year={2020},
publisher={Elsevier}
}

@article{Pol_thiele2024realistic,
title={Realistic accelerated stress tests for PEM fuel cells: Test procedure development based on standardized automotive driving cycles},
author={Thiele, Paul and Yang, Yue and Dirkes, Steffen and Wick, Maximilian and Pischinger, Stefan},
journal={international journal of hydrogen energy},
volume={52},
pages={1065--1080},
year={2024},
publisher={Elsevier}
}

@article{trabia2016,
title={A fabrication method of unique Nafion shapes by painting for ionic polymer-metal composites},
author={Trabia, S. and Hwang, T. and Kim, K.J.},
journal={Smart Materials and Structures},
volume={25},
pages={085006--085021},
year={2016},
doi={10.1088/0964-1726/25/8/085006}
}


% Degradation mechanisms
@article{pei2008,
title={A quick evaluating method for automotive fuel cell lifetime},
author={Pei, P. and Chang, Q. and Tang, T.},
journal={International Journal of Hydrogen Energy},
volume={33},
number={14},
pages={3829--3836},
year={2008},
doi={10.1016/j.ijhydene.2008.04.048},
issn={0360-3199}
}

%pt dissolution
@article{cherevko2015,
title={Dissolution of platinum in the operational range of fuel cells},
author={Cherevko, S. and Keeley, G.P. and Geiger, S. and Zeradjanin, A.R. and Hodnik, N. and Kulyk, N. and others},
journal={ChemElectroChem},
volume={2},
pages={1471--1479},
year={2015},
doi={10.1002/celc.201500207}
}
@article{luo2010,
title={Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: effects of temperature and pH},
author={Luo, G. and Xie, L. and Zou, Z. and Zhou, Q. and Wang, J.-Y.},
journal={Applied Energy},
volume={87},
pages={3710--3717},
year={2010},
doi={10.1016/j.apenergy.2010.06.005}
}

@article{wallnofer2024main,
title={Main degradation mechanisms of polymer electrolyte membrane fuel cell stacks--Mechanisms, influencing factors, consequences, and mitigation strategies},
author={Walln{\"o}fer-Ogris, Eva and Poimer, Florian and K{\"o}ll, Rebekka and Macherhammer, Marie-Gabrielle and Trattner, Alexander},
journal={International Journal of Hydrogen Energy},
volume={50},
pages={1159--1182},
year={2024},
publisher={Elsevier}
}
@article{takei2016,
title={Load cycle durability of a graphitized carbon black-supported platinum catalyst in polymer electrolyte fuel cell cathodes},
author={Takei, C. and Kakinuma, K. and Kawashima, K. and Tashiro, K. and Watanabe, M. and Uchida, M.},
journal={Journal of Power Sources},
volume={324},
pages={729--737},
year={2016},
doi={10.1016/j.jpowsour.2016.05.117}
}
@article{pavlivsivc2018platinum,
title={Platinum dissolution and redeposition from Pt/C fuel cell electrocatalyst at potential cycling},
author={Pavli{\v{s}}i{\v{c}}, Andra{\v{z}} and Jovanovi{\v{c}}, Primo{\v{z}} and {\v{S}}elih, Vid Simon and {\v{S}}ala, Martin and Hodnik, Nejc and Gaber{\v{s}}{\v{c}}ek, Miran},
journal={Journal of The Electrochemical Society},
volume={165},
number={6},
pages={F3161--F3165},
year={2018},
publisher={The Electrochemical Society}
}
@article{okonkwo2021platinum,
title={Platinum degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review},
author={Okonkwo, Paul C and Ige, Oladeji O and Uzoma, Paul C and Emori, Wilfred and Benamor, Abdelbaki and Abdullah, Aboubakr M and others},
journal={International journal of hydrogen energy},
volume={46},
number={29},
pages={15850--15865},
year={2021},
publisher={Elsevier}
}

@article{randall2022predicted,
title={Predicted impacts of Pt and ionomer distributions on low-pt-loaded PEMFC performance},
author={Randall, Corey R and DeCaluwe, Steven C},
journal={Journal of the Electrochemical Society},
volume={169},
number={9},
pages={094512},
year={2022},
publisher={IOP Publishing}
}
%Electrochemical carbon corrosion
@article{park2016effects,
title={Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells},
author={Park, Young-Chul and Tokiwa, Haruki and Kakinuma, Katsuyoshi and Watanabe, Masahiro and Uchida, Makoto},
journal={Journal of Power Sources},
volume={315},
pages={179--191},
year={2016},
publisher={Elsevier}
}
@article{zhao2021carbon,
title={Carbon corrosion mechanism and mitigation strategies in a proton exchange membrane fuel cell (PEMFC): A review},
author={Zhao, Junjie and Tu, Zhengkai and Chan, Siew Hwa},
journal={Journal of Power Sources},
volume={488},
pages={229434},
year={2021},
publisher={Elsevier}
}

@article{lin2015investigating,
title={Investigating the effect of start-up and shut-down cycles on the performance of the proton exchange membrane fuel cell by segmented cell technology},
author={Lin, R and Cui, X and Shan, J and T{\'e}cher, L and Xiong, F and Zhang, Q},
journal={International Journal of Hydrogen Energy},
volume={40},
number={43},
pages={14952--14962},
year={2015},
publisher={Elsevier}
}





%membrane degradation
@article{ohma2008,
title={Membrane degradation mechanism during open-circuit voltage hold test},
author={Ohma, A. and Yamamoto, S. and Shinohara, K.},
journal={Journal of Power Sources},
volume={182},
number={1},
pages={39--47},
year={2008},
doi={10.1016/j.jpowsour.2008.03.031}
}


%Corrosion
@article{matsutani2010,
title={Effect of particle size of platinum and platinum-cobalt catalysts on stability against load cycling},
author={Matsutani, K. and Hayakawa, K. and Tada, T.},
journal={Platinum Metals Review},
volume={54},
pages={223--232},
year={2010}
}

@article{Corr_ren2022corrosion,
title={Corrosion of metallic bipolar plates accelerated by operating conditions in a simulated PEM fuel cell cathode environment},
author={Ren, Peng and Pei, Pucheng and Chen, Dongfang and Zhang, Lu and Li, Yuehua and Song, Xin and Wang, Mingkai and Wang, He},
journal={Renewable Energy},
volume={194},
pages={1277--1287},
year={2022},
publisher={Elsevier}
}

@article{Corr_kumagai2012high,
title={High voltage retainable Ni-saving high nitrogen stainless steel bipolar plates for proton exchange membrane fuel cells: Phenomena and mechanism},
author={Kumagai, Masanobu and Myung, Seung-Taek and Ichikawa, Takuma and Yashiro, Hitoshi and Katada, Yasuyuki},
journal={Journal of Power Sources},
volume={202},
pages={92--99},
year={2012},
publisher={Elsevier}
}

@article{Corr_mele2010localised,
title={Localised corrosion processes of austenitic stainless steel bipolar plates for polymer electrolyte membrane fuel cells},
author={Mele, Claudio and Bozzini, Benedetto},
journal={Journal of Power Sources},
volume={195},
number={11},
pages={3590--3596},
year={2010},
publisher={Elsevier}
}



%Methode




%Results and discussion



+ 45
- 0
Content/Abbreviations.tex Просмотреть файл

@@ -0,0 +1,45 @@
\chapter*{Abbreviations} \addcontentsline{toc}{chapter}{Abbreviations}
\markboth{Abbreviations}{Abbreviations}
\noindent

\begin{tabular}{ll}
\textbf{Abbreviation} &\textbf{Meaning}\\ [0.25cm]
AFC & Alkaline Fuel Cells\\
AST & Accelerated Stress Test\\
BEV & Battery Electric Vehicle\\
BP & Bipolar Plates\\
CCE& Catalyst Coated Electrode\\
CCM & Catalyst Coated Membrane\\
CCS & Catalyst Coated Susbrate\\
CL & Catalyst Layer \\
CVM & Cell Voltage Monitoring\\
EDX & Energy Dispersive X-ray\\
EIS & Electrochemical Impedance Spectroscopy\\
FC& Fuel Cell\\
FCEV & Hydrogen Fuel Cell Vehicle\\
GDL & Gas Diffusion Layer\\
GHG& Grennhouse Gas Neutrality\\
ICE & Internal Combustion Engine\\
ICR & Interfacial Contact Resistance\\
IPCC& Intergovernmental Panel on Climate Change\\
LES & Lehrstuhl für Energiesysteme \\
MCFC&Molten Carbonate Fuel Cell\\
MEA& Membrane Electrode Assembly \\
MPL & Microporous Layer \\
MPL & Microporous layer\\
NEDC & New European Driving Cicle\\
OCP & Open Circuit Potential\\
OCV & Open Circuit Voltage\\
ORR& Oxygen Reduction Reaction\\
PEM & Polymer Electrolyte Membrane \\
PEMFC & Polymer Electrolyte Membrane Fuell Cell\\
PTFE &Polytetrafluoroethylene /Teflon\\
SOFC& Solid Oxide Fuel Cell\\
TPB & Triple Phase Boundary \\
TUM& Technical University of Munich\\
\end{tabular}

\newpage
\thispagestyle{empty}
\mbox{}
\newpage

+ 8
- 0
Content/Abstract.tex Просмотреть файл

@@ -0,0 +1,8 @@
\addchap*{Abstract}
\label{cap:Abstract}

Short description of the aim / motivation, the highlights, the results and the conclusions of your work. Please do not use references, abbreviations, tables or figures. You can also include an outlook in the end. The abstract should be understandable without the actual article. Try to make the reader curious. Write clearly and logically using short sentences and familiar terms.

\textbf{Key Words:$\>$ Simulation $\>$ Gasification}

\clearpage

+ 4
- 0
Content/Acknowledgements.tex Просмотреть файл

@@ -0,0 +1,4 @@
\chapter*{Acknowledgements}
\label{cap:Acknowledgements}

Just in case you want to say some kind word to the ones who supported you and helped you develop this work. Do not include this part in the table of contents.

+ 21
- 0
Content/Appendix.tex Просмотреть файл

@@ -0,0 +1,21 @@
\chapter{Appendix}
\label{cap:Appendix}

The appendix fulfills some important functions for work that follows on your work, for example. Furthermore, the appendix is a foundation of your main section. You should add facts that support your course of action. Be careful not to make a second report out of the appendix. Just put your documents together clearly.

The following is a list of what the appendix can contain, for example:
\begin{itemize}
\item Time Schedule
\item Cost Calculation
\item Detailed Calculations
\item Documents created during work (e.g. technical drawings)
\item Tables with measurement data / results
\end{itemize}

\section{First Appendix}

If additional items are added, please number them in an appropriate format.

\section{Second Appendix}

...

+ 46
- 0
Content/Introduction.tex Просмотреть файл

@@ -0,0 +1,46 @@
\chapter{Introduction}
\label{cap:Introduction}

\section{Motivation}

As stated in the special report from the Intergovernmental Panel on Climate Change (IPPC) human activities have caused a increase in global temperatures of approximately 1.0 °C when comparing it to pre-industrial levels. Furthermore, this rise could reach 1.5 °C in the overall temperature by the years 2030 and 2052 \citep{01_ipcc_sr15_2018}. The Paris Agreement aims to restrict the rise in global average warming to below 2 °C. To clarify the risk global average warming can be divided into three categorys reaching from >1,5°C which is classified as dangerous , >3°C deemed catastrophic and Warming exceeding 5°C is classified as unknown which suggests it is beyond that and could represent an existential threat by the year 2050 \citep{01_xu_ramanathan_2017}.

The new climate protection program released by the German government on the 17 of July 2024 has set the goal of cutting greenhouse gas emissions (GHG) by 65\% relative to 1990 levels by the year 2030. Additionally, it sets a target for Germany of achieving greenhouse gas neutrality by 2045 \citep{01_E_klimaschutzgesetz}.

When looking into the different GHG emissions it is noticeable that 80,6\% are attributed to CO$_2$. Meanwhile methane (CH$_4$) as well as nitrous oxide (N$_2$O) are responsible for 12,1\% and 5,3\% \citep{01_umweltbundesamt_treibhausgas_eu}.
It is estimated that the anthropogenic GHG emissions have contributed in the rise of global average temperature by 0,8 to 1,3 °C from the years 1850-1900 until 2010-2019. For the estimated of 1,3°C, CO$_2$ alone accounts for 0,85°C \citep{01_ipcc_ar6_wg1_2021}.

Since the effect of CO$_2$ on global warming is undeniable it is worth looking at this aspect of the GHG more closely. In the year 2024 traffic in Germany amounted to 19,8\% of the total GHG emissions. \citep{01_umweltbundesamt_verkehr_emissionen}. This percentage in the EU can be broken down by vehicle type: passenger cars and motorcycles were responsible for the largest portion, contributing 60\% of the emissions, while buses and trucks accounted for 27\%. Light commercial vehicles contributed the smallest share at 13\%. Furthermore, traffic emissions have been increasing not only in germany but also across the EU, with an estimated 24\% CO$_2$ rise since 1990 \citep{01_destatis_co2_strassenverkehr}.

Since fossil fuels account for almost 90\% of all CO$_2$ emissions the importance of transitioning to renewable energy sources cannot be overstated \citep{01_un_climatechange_causes_2023}. Viable alternatives to internal combustion engines (ICEs) are on the rise, such as battery electric vehicles (BEVs) and also hydrogen fuel cell vehicles (FCEVs). By adopting these greener alternatives GHG emissions of the transportation sector could be significantly reduced, contributing to a more sustainable future \citep{01_wilberforce_advances_2016}.

When compared to the other alternatives fuel cells do require less mantainance than ICEs and its operating temperature can be as low as 80°C not unlike ICEs operating temperatures which can reach over 2000 °C. They can also be recharged almost instantly unlike BEVs \citep{01_wilberforce_advances_2016}.
Although fuel cell technology is very promising and its development is advancing at a fast pace, there are still a few challenges which make commercialization difficult. One factor in particular is the material and component costs
\citep{01_wilberforce_developments_2017}.
The bipolar plate (BP) of a proton-exchange membrane fuel cell (PEMFC) amounts for 45\% of the stack manufacturing cost\citep{wang_preparation_2018}.

Metals such as SS316L have been under investigation for some time to reduce material and production costs of the bipolar plates and therefore of the PEMFC
\citep{wang_preparation_2018}. While Stainless Steel has some promising attributes like a good mechanical strength and high power density it also has its downside like the corrosion of the metallic BPs. Another problem is the membrane degradation which could also be coupled to the corrosion of the BPs as the Fe$^{2+}$ ions are released from the plate move to the membrane and intensify the degradation \citep{elferjani_coupling_2021}.




\section{Problem Statement}

In the past bipolar plates for PEMFCs were made out of Titanium or Ti-C Coated materials.
%Toyota quelle titan platten.
Since bipolar plates contribute to 45\% of the stack costs, there has been a constant search for new materials that could also fullfill the requirements needed but at a lower cost \citep{wang_preparation_2018}. Even though the production of stainless steel plates would cost a fraction of titanium plates and its mechanical strength and conductivity would also meet the requirements it is not as corrosion resistant as Titanium. Therefore stainless steels have been under investigation for some time. Methods used until now to evaluate the corrosion resistance and corrosion damage of PEMFCs focus on ex-situ analysis of the materials and rarely on in-situ methods as well as analyzing the actual bipolar plates with ex-situ methods. \\
%no good insitu methods...
\\The purpose of this master's thesis is presented as followed:
\begin{enumerate}
\item Deepen the understanding of corrosion on stainless steel bipolar plates by analyzing SS316L plates and defining the main corrosion mechanism.
\item Understanding which operating conditions will reinforce corrosion.
\item Develop a endurance run with reinforcing conditions for corrosion.
\item Further developing of ex-situ Analytical methods to characterize, detect and evaluate corrosion damage on bipolar plates.
\end{enumerate}




\section{Outline of the Thesis}
In the last part of the introduction, the outline of your report should be defined. You should include the approach and applied strategy to solve your assignments as well.

+ 18
- 0
Content/MainSection.tex Просмотреть файл

@@ -0,0 +1,18 @@
chapter{Theoretical Background}
\label{cap: Theorie}
In dem zweiten Kapitel werden die theoretischen Grundlagen für diese Semesterarbeit besprochen. Dafür wird als Erstes im Abschnitt \ref{sec: Revox} die Funktionsweise und der Aufbau einer Festoxidbrennstoffzelle (SOFC) erläutert. Daraufhin werden in Abschnitt \ref{sec: T_Teere} die Teere vorgestellt und deren mögliche Reaktionen in der SOFC. Zuletzt wird noch erläutert, wie die Teerkonzentration in der Anlage berechnet wird.

\section{PEM Fuel Cell}
\label{sec: Revox}

\subsection{Electrochemical Fundamentals}

\subsection{Materials}

\subsection{Department of Energy Targets}

\section{Degradation Mechanisms}

\subsection{Corrosion}

\subsection{Membrane Degradation}

+ 78
- 0
Content/Method.tex Просмотреть файл

@@ -0,0 +1,78 @@
\chapter{Method}
\label{chap:Methode}

methosjfsdhfkjsahfdkjsa

\section{Modelation of Corrosion Mechanism}
\label{sec:Anlagenbeschreibung}

\section{Material Characterization of Substrate}

\subsection{Potentiostatic Measurements}

\subsection{Potentiodynamic Measurements}

\section{Experimental Setup of Endurance Run}


\subsection{Testbench}

\subsection{Characterization of Cells}

Polkurves 60,80,90
vorher nachher
vrgl. versch temp.

\subsection{pH Measurement}

\begin{table}[h]
\centering
\begin{tabular}{ccccccc}
\hline
T$_{coolant,in}$ & T$_{gas,A}$ & T$_{dp,A}$ &p$_{out,A}$ &T$_{gas,C}$ & T$_{dp,C}$& p$_{out,C}$\\
\hline
60& 75 & 37& 2&75 &46& 2\\
75& 90 & 49& 2&90 & 59& 2\\
90& 105 & 62& 2&105& 73& 2\\

\end{tabular}
\caption{Temperatures of the cell}
\label{tab:3_pH_T}
\end{table}
%dividing this into Temperature and pressure?





\subsection{Development of Endurance Run}

\subsection{Characterization of the Endurance Run}

Polkurves 60,80
vorher nachher
vrgl. versch temp.

\begin{table}[h]
\centering
\begin{tabular}{ccccccc}
\hline
T$_{coolant,in}$ & T$_{gas,A}$ & T$_{dp,A}$ &p$_{out,A}$ &T$_{gas,C}$ & T$_{dp,C}$& p$_{out,C}$\\
\hline
65& 85 & 45& 2,3&85 &53& 1,4\\
\end{tabular}
\caption{Temperatures of the cell}
\label{tab:3_ER}
\end{table}

pt agglomeration 6

\section{Ex-Situ analysis}

\subsection{Laser Induced Breakdown Spectroscopy(LIBS)}

\subsection{Energy Dispersive X-Ray Spectroscopy (EDX)}

\subsection{Scanning Electrone Microscope (SEM)}

\subsection{Inductively Coupled Plasma Spectroscopy (ICP)}

+ 29
- 0
Content/Notation.tex Просмотреть файл

@@ -0,0 +1,29 @@
\chapter*{Notation} \addcontentsline{toc}{chapter}{Notation}
\markboth{Notation}{Notation}
\noindent
\textbf{Latin Symbols}\\ [0.25cm]
\begin{tabular}{lll}
\textbf{Symbol} &\textbf{Unit} &\textbf{Explanation}\\
$A$ &\si{\metre\squared} &Surface Area\\
\end{tabular}

\bigskip
\noindent
\textbf{Greek Symbols}\\ [0.25cm]
\begin{tabular}{lll}
\textbf{Symbol} &\textbf{Unit} &\textbf{Explanation}\\
$\rho$ &\si{\kilogram\per\metre\cubed} &Density\\
\end{tabular}

\bigskip
\noindent
\textbf{Indices}\\ [0.25cm]
\begin{tabular}{ll}
\textbf{Symbol} &\textbf{Explanation}\\
h &hydraulic\\
\end{tabular}

\newpage
\thispagestyle{empty}
\mbox{}
\newpage

+ 34
- 0
Content/Results and Discussion.tex Просмотреть файл

@@ -0,0 +1,34 @@
\chapter{Results and Discussion}
\label{chap:Ergebnisse und Diskussion}



\section{Material Characterization of SS316L}

\subsubsection{Corrosion Parameters}

\subsubsection{Department of Energy Target}

\section{pH Measurement}

\section{Endurance Run}

Betriebsbedingungnen soll ist vergleich

\subsubsection{Polarization Curves}

\subsubsection{Effects of Relative Humidity in the Air}

\subsection{Product Water Analysis}


\section{Ex-Situ Analysis}

\subsection{LIBS Measurement}

\subsection{EDX Measurement}

\subsection{SEM Measurement}

\subsection{ICP Measurement}


+ 10
- 0
Content/StatutoryDeclaration.tex Просмотреть файл

@@ -0,0 +1,10 @@
\addchap*{Statutory Declaration}
\label{cap:StatutoryDeclaration}

I hereby declare that I have prepared the present work independently and without help of others. Thoughts and quotes that have been taken over directly or indirectly from other sources are marked as such. This work has not been submitted to any examining authority in the same or similar form and has not been published yet.

I hereby agree that the work can be made available by the Institute of Energy Systems to the public.

\vspace{3cm}

\rule{3cm}{0.02mm}, the \rule{3cm}{0.02mm} \hfill \rule{5cm}{0.02mm}

+ 10
- 0
Content/SummaryAndOutlook.tex Просмотреть файл

@@ -0,0 +1,10 @@
\chapter{Summary and Outlook}
\label{cap:SummaryAndOutlook}

\section{Summary}
Sum up the most important concepts and results of your work in a clear and straightforward way. What was again the main reason for your wok? How did you proceed? Where did you find the biggest problems? Which results did you get?

You can include here a commented and reviewed analysis of your procedure. Comments and opinions must not necessarily be negative. Try to mention both positive and negative sides.

\section{Outlook}
Try to mention what could be done in the future. This section is of major importance for future works dealing with similar problems. Let people working on these future works take advantage from the experience you gained. The outlook is very important for a scientific report. Mention also possible future work that can be carried out from your results.

+ 409
- 0
Content/Theoretical Background.tex Просмотреть файл

@@ -0,0 +1,409 @@
\chapter{Theoretical Background}
\label{cap: Theorie}


In this chapter, the fundamental concepts and components of fuel cells are explored to provide a comprehensive understanding of Proton Exchange Membrane Fuel Cells (PEMFCs). Section 2.1 covers the basic principles of fuel cells, followed by Section 2.2, which delves into the electrochemical fundamentals, including the thermodynamics of the cell (2.2.1). Section 2.3 focuses specifically on PEMFCs, discussing their operation (2.3.1), overpotential (2.3.2), and methods of characterization (2.3.4). Finally, Section 2.4 examines degradation mechanisms in PEMFCs, detailing the degradation of the platinum catalyst (2.4.1), membrane degradation (2.4.2), electrochemical carbon corrosion (2.4.3), and overall corrosion processes (2.4.4). This structure lays the groundwork for understanding the challenges and performance factors of PEMFCs in practical applications.


\section{Fundamentals of the Fuel Cell}
\label{sec: Revox}

As said in the introduction, the clear impact of the GHG emissions and specially of the CO$_2$ emissions on climate change and the environment is undeniable. Therefore, new technologies such as fuel cells with almost no emissions and also no noise pollution are becoming a promising alternative to conventional Internal combustion engines (ICEs). This engines continue to depend on fossil fuels to function, whereas fuel cells run on hydrogen and air which undergo an electrochemical reaction within the fuel cell to generate electrical power, this reaction results in water as a byproduct\citep{01_wilberforce_advances_2016,02_baroutaji2015materials}.
Battery electric vehicles (BEVs) are another alternative to ICEs which could also lower GHG as well as CO$_2$ emissions but only if the electric energy is also produced by renewable sources. However, when comparing fuel cells with BEVs there are some advantages that are worth mentioning. Fuel cells can be recharged almost instantly like ICEs and unlike BEVs. Besides that fuel cells can also run on other fuels and not only on pure Hydrogen depending on the fuel cell type. Fuel cells do not need to be disposed like Batteries and have a much longer operation time. Last but not least fuel cells have a wider range of temperatures in which they can be operated \citep{01_wilberforce_advances_2016, 02_lucia2014overview}.

Before continuing into the way of operation and the electrochemistry behind the fuel cell, it is essential to briefly explain the different types of fuel cells. These can be categorized based on the type of electrolyte membrane they use into solid oxide fuel cells (SOFCs), molten carbonate fuel cells (MFCSs), alkaline fuel cells (AFCs) and the most important one for this Thesis: polymer electrolyte membrane fuel cells (PEMFCs)\citep{02_wang2020fundamentals}. Also depending on the fuel cell type, operating temperatures may vary between -40 to almost 1000°C which will be explained in the following\citep{02_Abderezzak2018}.

\subsubsection{Solid Oxide Fuel Cells (SOFCs)}

The operating temperatures of SOFCs is higher than in the other types of fuel cells ranging from 500 to 1000 °C \citep{SOFC_hauser2021effects}. This high operating temperature allows the fuel cell to run not only on pure hydrogen but with gases which also contain methane (CH$_4$), carbon dioxide (CO$_2$) as well as carbon monoxide (CO), water vapour (H$_2$O) and hydrogen H$_2$ \citep{SOFC_lin_analysis_2024}. If the anode fuel has CH$_4$ and water vapour in it, the methane (CH$_4$) can be reformed in the fuel cell by the process of steam reforming shown in the equation \ref{eq:Steam reforming} which will produce hydrogen (H$_2$)and carbon monoxide (CO) \citep{SOFC_Haberman2004}.
\begin{equation}
\mathrm{CH}_4+\mathrm{H}_2 \mathrm{O} \leftrightarrow \mathrm{CO}+3 \mathrm{H}_2, \Delta H_{298}=2.06 \times 10^5 \mathrm{KJ} / \mathrm{Kmol}
\label{eq:Steam reforming}
\end{equation}

Another internal reaction is the water-gas-shift reaction which can turn carbon monoxide and water vapour into carbon dioxide and hydrogen in the SOFC as shown in the following equation \ref{eq:WGS} \citep{SOFC_lin_analysis_2024,SOFC_WGS_Buttler2016}.

\begin{equation}
\mathrm{CO}+\mathrm{H}_2 \mathrm{O} \leftrightarrow \mathrm{CO}_2+\mathrm{H}_2, \Delta H_{298}=-4.1 \times 10^4 \mathrm{KJ} / \mathrm{Kmol}
\label{eq:WGS}
\end{equation}


\subsubsection{Molten Carbonate Fuel Cells (MCFCs)}

MCFCs are also high temperature cells with an operating temperature of about 600 to 700 °C and a Electrolyte made out of molten carbonate (CO$_3$$^{2-}$). Like SOFCs they can also be operated not only with pure hydrogen (H$_2$) but also with biogas which could also contain CH$_4$ as well as CO$_2$ and CO \citep{02_lucia2014overview, 02_wang2020fundamentals}.
Therefore, SOFCs and MCFCs do not any external reformer to convert other fuel types into H$_2$ as they use the same reforming reactions from the equations \ref{eq:Steam reforming} and \ref{eq:WGS}
\citep{MCFScontreras2021molten}.
It is also possible to combine SOFC and MCFC with working temperatures of 550-700°C which are slighlty higher than a normal MCFC at 650
\citep{MCFS_cui2021review}. Furthermor, the electrical efficiency of the MCFCs can reach up to 60\% \citep{wang_preparation_2018}.


\subsubsection{Alkaline Fuel Cells (AFCs)}

For AFCs the operating temperature is about 50-200 °C which is much lower than those of the SOFC and MCFC but a lot closer to the temperature in which PEMFCs are operated \citep{02_wang2020fundamentals}. Another main difference between AFCs and SOFCs is, that the electrolyte in a AFC is liquid unlike the solid state of the ceramics used in SOFCs. AFCs uses a potassium hydroxide solution (KOH) as an electrolyte which is embedded in the matrix \citep{02_Abderezzak2018,02_wang2020fundamentals}. Unlike SOFCs and MCFC and due to the lower temperature, AFCs can be poisoned by carbon dioxide (CO$_2$). In that case, the alkaline electrolyte could react directly with the CO$_2$ which could lead to the the following reaction equations \ref{eq:AFC_Poisoning} \citep{AFC_mclean2002assessment}:

\begin{equation}
\begin{aligned}
&\mathrm{CO}_2+2 \mathrm{OH}^{-} \rightarrow \mathrm{CO}_3^{2-}+\mathrm{H}_2 \mathrm{O} \text { and/or }\\
&\mathrm{CO}_2+2 \mathrm{KOH} \rightarrow \mathrm{K}_2 \mathrm{CO}_3+\mathrm{H}_2 \mathrm{O}
\end{aligned}
\label{eq:AFC_Poisoning}
\end{equation}

This reaction could reduce the ionic conductivity of the electrolyte as well as block the pores in the electrode. The carbonate shown in the equation \ref{eq:AFC_Poisoning} could also block the pores of the catalyst resulting in the aforementioned reduction of ionic conductivity in the electrolyte
\citep{AFC_mclean2002assessment, AFC_AlSaleh1994_CO2, AFC_AlSaleh1994_Ni}.

\subsubsection{Polymer Electrolyte Membrane Fuel Cells (PEMFCs)}

For Polymer electrolyte membrane fuel cells the operating temperature can be lower than those from the other fuel cell types including the AFCs, PEMFCs can be operated at 40 to 80 °C \citep{02_lucia2014overview}. For high temperature PEMFCs the operating temperature can even go as high as 150-180 °C \citep{02_wang2020fundamentals}. Because of its low operating temperature and its high output power density it is highly suited for mobile applications like the automotive industry. PEMFCs run on pure hydrogen as fuel and cannot use Biogas containing methane (CH$_4$), carbon dioxide (CO$_2$) or carbon monoxide CO as they cannot reform it internally to pure hydrogen H$_2$ \citep{PEM_Atuomotive_arrigoni2022greenhouse}.

Its mobile applications have turned the PEMFCs into one of the biggest research fields in the search for greener alternatives to conventional ICEs. It typically features a solid polymer electrolyte membrane and porous carbon electrodes with platinum functioning as catalyst \citep{01_wilberforce_developments_2017}.

Since this thesis focuses its attention on automobile applications, the following sections will provide a detailed explanation of the relevant fuel cell. However, before looking into the way of function the subsequent section will first cover the electrochemical fundamentals.



\section{Electrochemical Fundamentals}

The function of a fuel cell is to transform the chemical energy stored in the fuel (hydrogen H$_2$) in electrical energy. During this electrochemical reaction the fuel is transformed but the fuel cell is not consumed by the energy production unlike in a battery. In a fuel cell the electrochemical redox reaction is split in two between the cathode and the anode which are separated by an electrolyte \citep{Fundamentals_o2016fuel}.

\begin{align}
\text{Anode:} \quad & \text{H}_2 \rightarrow 2\text{H}^+ + 2e^- \\
\text{Cathode:} \quad & \frac{1}{2}\text{O}_2 + 2\text{H}^+ + 2e^- \rightarrow \text{H}_2\text{O} \\
\text{Overall:} \quad & \text{H}_2 + \frac{1}{2}\text{O}_2 \rightarrow \text{H}_2\text{O}
\label{eq:PEM}
\end{align}

In the anode the oxidation part of the reaction takes place. Electrons are removed from the Hydrogen H$_2$ as shown in the equation (2.4). In the Cathode those liberated electrons are consumed by the reduction reaction and oxygen (O$_2$) and 2H$^+$ form water (H$_2$O) as a product. This is summed up in the overall reaction from te equation (2.6) \citep*{Fundamentals_o2016fuel}. Moreover, the anodic reaction can also be called hydrogen oxidation reaction (HOR) and the cathodic reaction is called oxygen reduction reaction (ORR) \citep{Fundamentals_scherer2012fuel}.

\subsection{Thermodynamics of the Cell}

In addition, the reaction produces heat (or enthalpy H) since there is a difference $\Delta$H between the enthalpy of the products and the enthalpy of the reactants \citep{Fund_barbir2008fuel}.
\begin{equation}
\Delta H=\Delta H_{product}- \Delta H_{reactant}
\label{eq:Enthalpy}
\end{equation}

The Gibbs free energy corresponds to the enthalpy in the reaction that can be converted to electricity. It is defined by the following equation (\ref{eq:Gibbs}). $\Delta$H is the difference of the enthalpy and T$\Delta$S expresses the losses of entropy ($\Delta$S) which are dependent on the temperature
\citep{Fund_barbir2008fuel}.

\begin{equation}
\Delta G=\Delta H-T \Delta S
\label{eq:Gibbs}
\end{equation}

Furthermore, with the help of the Faraday constant F (96,487 C/mol) and n for the number of electrons transferred in the reaction as well as a value for $\Delta$G for the Gibbs free energy the reversible theoretical potential E$_{rev}$ of a cell and in standard conditions can be calculated with the following equation
\citep{Fundamentals_scherer2012fuel}:

\begin{equation}
E_{rev}=\frac{-\Delta G}{n F}
\label{eq:E}
\end{equation}

E$_{rev}$ can also be referred to as E$^0$ which is the open circuit voltage (OCV) in standard conditions (1 atm and 25°C or 298K)\citep{Fundamentals_scherer2012fuel, F_omran2021mathematical}. Since this equation (\ref{eq:E}) can be used only in standard conditions the reversible potential of a cell in non-standard conditions cannot by calculated by it. In a non-standard case where the temperature or the pressure is another, the Nernst equation can be used
\citep*{Fundamentals_o2016fuel,Nernst_sahu2014performance}.

\begin{equation}
E=E^0-\frac{R T}{n F} \ln \frac{\prod a_{\text {products }}^{v_i}}{\prod a_{\text {reactants }}^{v_i}}
\label{eq:nernst}
\end{equation}

To be able to understand the Nernst equation first the concept of chemical potential $\mu$ has to be explained \citep{Nernst_mardle2021examination}. The chemical potential describes how the number of molecules or atoms $n_i$ of a species $i$ afects the thermodynamic potentials. In this case $a$ is the activity of the species. which for an ideal gas is $a_i$ = $p_i$/$p^0$. If the gas is non ideal it has to be multiplied with $\gamma$ wich describes how far away the gas is from an ideal one $(0<\gamma<1)$ with $\gamma=1$ as an ideal gas \citep{Fundamentals_o2016fuel}. In the Nernst equation $v_i$ refers to the stoichiometric coefficient of the products or of the reactants. R is the gas constant (R = 8,314 J/molK)

\begin{equation}
\mu=\mu^0+R \operatorname{Tln}(a)
\label{eq:mu}
\end{equation}

The following equation can also be rewritten to describe how the chemical potential relates to the Gibbs free energy.

\begin{equation}
\mu_i^\alpha=\left(\frac{\partial G}{\partial n_i}\right)_{T, p, n_{j \neq i}}
\label{eq:chem1}
\end{equation}

Using the equations (\ref{eq:chem1}) and (\ref{eq:mu}) it is possible to calculate how the Gibbs free energy changes with the $i$ different chemical species resulting in the following equation (\ref{eq:gibbs_2}):

\begin{equation}
d G=\sum_i \mu_i d n_i=\sum_i\left(\mu_i^0+R T \ln a_i\right) d n_i
\label{eq:gibbs_2}
\end{equation}

Finally this equation (\ref{eq:gibbs_2}) can be inserted into the equation (\ref{eq:E}) to form the Nernst equation (\ref{eq:nernst}) in its general form\citep{Fundamentals_o2016fuel}.

\newpage

\section{PEMFC}
\label{sec: PEMFC}

Since this Thesis focuses on the automotive applications of fuel cells the focus of the following sections will shift to the Polymer Electrolyte Membrane Fuel Cell (PEMFC) which are the most widely used in automotive contexts due to their low operating temperature as well as its high output power density \citep{PEM_Atuomotive_arrigoni2022greenhouse}.
In the following section \ref{subsec:2_wayoffunct} the PEMFC will be described in more detailed way starting with its main components and its way of function.

\subsection{Way of Function PEMFCs}
\label{subsec:2_wayoffunct}

To be able to produce more energy PEMFCs use not only one cell but a stack formed by hundreds of cells stacked on top of each other in between two monopolar plates at the ends as shown in the left side of the following figure \ref{fig:PEMFC} \citep{PEMSchem_xu2020towards}.

%vielleicht eine selber machen? Was ist hier los mit der quelle? Bug
\begin{figure}[htbp]
\centering
\includegraphics[width=0.8\textwidth]{Figures/Theorie/PEMFC.pdf}
\caption{Components of a PEMFC cell and its position in a fuel cell stack. Retrieved from Xu et al. page 816 [33].}
\label{fig:PEMFC}
\end{figure}

Every cell is composed by two bipolar plates (BPs) each with its anode and cathode side. Between each BP there is the membrane electrode assembly layer (MEA). The MEA consists of a proton exchange membrane in the middle of two catalyst layers (CL) and two gas diffusion layers (GDL) one on the cathode side and one on the anode side. Since the redox reaction in the fuel cell (equation \ref{eq:PEM}) is an exothermic reaction which generates heat the cell needs cooling, therefore the coolant can flow inside specific flow channels of the BP as illustrated in the figure \ref{fig:PEMFC} to prevent the system from overheating \citep{PEMSchem_xu2020towards}. The key components of the PEMFC and its functions will be explained in the following starting with the BPs. Since the focus of this Thesis is the BP corrosion this key component will be presented in a more detailed form.

\newpage
\subsubsection{Bipolar Plate (BP)}

The main functions of the BPs is to distribute fuel on the anode side and oxidant on the cathode side to the reactive sites in the catalyst layer (CL). It also collects the generated current and removes the byproducts from the reaction. Heat management is also a very important function, therefore special channels (flow channels) transport the coolant and remove the heat from the cell \citep{PEM_baroutaji2015materials}.

Since the BPs are responsible for 60-80 \% of the weight of as well as 20-30\% of the total cost of the fuel stack the materials used for it have been under investigation for some time and the Department of Energy (DOE) has set up Targets for the components of the fuel cell \citep{doe_pemfc_targets}. This targets evaluate not only the cost of the materials but also durability and performance \citep{doe_pemfc_targets}. Due to their durability, excellent mechanical strength, high power density and electric conductivity, the investigations of new BP materials has been primarily focused on stainless steels, titanium alloys and aluminium alloys \citep{antunes2010}. In the past BPs were made out of graphite. Graphite is highly corrosion resistant, unfortunately it has some drawbacks like its high permeability for gases and production costs \citep{PEM_baroutaji2015materials}.

Stainless steels on the other hand are more cost effective and versatile, its high mechanical strength and malleability results in the possibility of producing thinner BPs which can lead up to a weight reduction of 40\% of the fuell cell stack
\citep{SSweight_li2005review}. This optimal characteristics have attracted the automotive sector and companies like Hyundai, GM and Honda which have produced fuel cell vehicles (FCV) with this stainless steels \citep{Automotive_leng2020}. Toyota on the other hand
uses a titanium bipolar plate nano composite (NC) as a surface treatment for the BPs used in the Mirai stack. This ensured a reduction in the thickness of the Titanium (Ti) plates so that the Platinum (Pt) used in the stack could be reduced by 58\% from its 2008 model to the second-generation Mirai \citep{toyota_technical_review_2021}. Since the collaboration between BMW and Toyota was announced in September 2024, BMW will also be using BPs manufactured by the Toyota Motor Corporation for its BMW iX5 Hydrogen planned for series production in 2028 \citep{bmw_hydrogen_2024}.

Stainles Steels BPs have a lower cost than Ti plates but its durability has been questioned since its corrosion resistance is lower than Ti plates and Aluminium plates. When Stainless steel plates corrode they release metal ions like Fe$^{2+}$ which lead to a accelerated chemical degradation of the membrane by contaminating the MEA. \citep{eom2012}. Even though Aluminium has a higher corrosion restistance than stainless steels it would release Al$^{3+}$ ions during the corrosion process which have an even bigger effect than Fe$^{2+}$ on the fuel cell catalyst \citep{sulek2011}. This form of degradation will be explained in the Section \ref{sec:Degradation}. Although SS316L has proven to have a higher corrosion resistance and is therefore used as reference material for Bipolar plates other more cost effective options have also been studied like stainless steels 310L, 304 and 904L\citep{papadias2015degradation,feng2011}.

\subsubsection{Membrane Electrode Assembly (MEA)}

As mentioned before the Membrane Electrode Assembly (MEA) is conformed by the Gas Diffusion layer (GDL) on the cathode side as well as the GDL on the anode side followed by the two catalyst layers (CL) which contain platinum (Pt) and Nafion and in the middle the proton exchange membrane (PEM) \citep{PEMSchem_xu2020towards}.
The MEA could be looked at as the most important component of a PEMFC as it is responsible for the chemical reactions and consequently for the performance of the fuel cell \citep{MEA_lim2021comparison}.

Three fabrication methods of MEA stand out because of its perfomance, the first one catalyst-coated membranes (CCMs) and catalyst-coated substrates (CCSs) and catalyst-coated electrode(CCE) \citep{MEA_lapicque2012,MEA_bhosale2020}.
A comparative study by Bhosale et al. \citep{MEA_bhosale2020} showed that the most effective method is CCE. Nevertheless, CCM shows high performance and many studies suggest that MEA produced with a CCM method can have many advantages over CCS and CCE, therefore it is the most used method \citep{PEM_MEA_parekh2022recent}.
CCM can lead to an increase of the total reactions in the MEA as well as reducing the Pt amount in the catalyst \citep{MEA_lim2021comparison}.
Since Pt can be very expensive methods to reduce the weight-loading percentage of the catalyst have also been under investigation and even Pt-free catalysts \citep{Pt_liew2014}. Moreover, Pt catalyst can be lost during dynamic operation of the cell (voltage cycling) either by Pt agglomeration or Pt dissolution which also leads to further degradation of the cell and higher mass transport losses as well as activation losses \citep{thiele2024realistic}. To be able to understand the MEA better now its components will be explained as well.


\subsubsection{Gas Diffusion Layer (GDL)}

Starting with the first layer of the MEA right between the BPs and the catalyst layers (CL) on both sides is the gas diffusion Layers (GDL) and also the microporous layer (MPL)\citep{PEMSchem_xu2020towards}. Their primary function is to offer mechanical support to the MEAs, ensure the flow of the reactants and also the removal of products. Furthermore, they have to enable the electron conduction between the CLs and the BPs on both sides.

Since its main functions are related to diffusion the GDL is made out of porous materials, typically it is made out of carbon paper\citep{02_wang2020fundamentals}.
To enhance water management and prevent flooding in the electrode the carbon paper GDL hast to be hydrophobic. For that reason Polytetrafluorethylene (PTFE) is often added to it as treatment to achieve this hydrophobicity
\citep{02_wang2020fundamentals,GDL_zamel2011}. Since a high PTFE load can cause an obstruction in the pores of the GDL and consequently cause mass transport limitations it is crucial to add the right amount. Studys have shown that 20 wt.\% is an optimal load percentage for PTFE to turn the carbon paper hydrophobic without blocking the pores \citep{GDL_zamel2011}. Also important are the capillary effects of the MPL, since the MPL is also hydrophobic it provides a great drainage as well as stable gas and electron channels \citep{ijaodola2019}. This helps the overall performance of the cell by reducing the flooding of the cell since this layer is in-between of the GDL and CL \citep{majlan2018}.

\subsubsection{Catalyst Layer (CT)}

The catalyst layers (CTs) are positioned between the PEM and the MPL on both sides. Electrochemical reactions take place here in the CL therefore it has to provide continuous pathways for the different reactants. More specific it has to provide a route for proton transport, its porous structure has to supply the gaseous reactants to the site as well as remove the water while also being able to form a conductive pathway for electrons between the CL and the current collector \citep{02_wang2020fundamentals}.

The oxygen reduction reaction (ORR) takes place at the CL and is the most critical process for a PEMFC at the anode \citep{PEM_baroutaji2015materials}. This reaction heavily relies on platinum (Pt) catalyst, by increasing the platinum load the ORR rate can be enhanced which leads to a higher power output in the cell \citep{PEM_MEA_parekh2022recent}. Contrary to the GDL and MPL platinum particles are not hydrophobic since they present hydrophilic capabilities \citep{CT_malek2011}.

As stated before, the CCM method is currently the most used in the production of the MEA. Since Pt is the most expensive part of the production and CCM production already has a better electrochemical performance than the CCS method and it showcases a lower Pt load\citep{hnat2019}. In this method the catalyst layer is produced by applying catalyst ink on a PEM \citep{MEA_lim2021comparison}. But a big challenge continues to be the search for a more cost effect alternative to Pt catalyst with the same electrochemical performance \citep{PEM_MEA_parekh2022recent}.

The Catalyst layer consists of a catalyst (Pt), carbon support, ionomer and a void space. PTFE was subsituted with recast Nafion ionomer as a binder allowing for a significant reduction in Pt loadings. Additionally Pt supported on carbon (Pt/C) also helps to decreases the metal content\citep{ink_zamel2016catalyst}. The ionomer serves a dual purpose as a binder for Pt/C particles and as a proton conductor. An imbalance in ionomer loading can lead to transport or ohmic losses which will be discussed in the subchapter \ref{subsec:losses}. Insufficient ionomer diminishes proton conductivity and an excessive amount can increase a resistance of gaseous reactant transport \citep{02_wang2020fundamentals}.




\subsubsection{Proton Exchange Membrane (PEM)}

The proton exchange membrane is the heart of the PEMFC, it is in the middle between cathode and anode followed by CL, MLP and then GDL in that order from the inside to the outside. The PEM has to primary functions. The first one is serving as a barrier, it prevents the mixing of reactant gases and electrons between the anode and cathode. The second one is to facilitate proton conduction from the CL on the anode to the CL on the cathode side. Furthermore, the PEM is impermeable for gas, it stops the oxygen and hydrogen crossover and it has to be electrically insulating. Another requirement for the membrane is a exceptional chemical and mechanical stability to be able to endure the harsh operating conditions of the PEM fuel cells \citep{ghassemzadeh2010chemical}.

The most widely used material for the membrane in a PEMFC is perfluorosulfonic acid (PFSA) also referred to as Nafion which was developed by DuPont
\citep{PEM_MEA_parekh2022recent}. Figure \ref{fig:Nafion} shows the chemical structure of Nafion \citep{okonkwo2021nafion}.


\begin{figure}[htbp]
\centering
\includegraphics[width=0.5\textwidth]{Figures/Theorie/Nafion.pdf}
\caption{Chemical structure of PFSA also called Nafion. Retrieved from Chen et al., page 1436 (1) [59]}
\label{fig:Nafion}
\end{figure}

Since the main chain is Teflon-like it has an hydrophobic side and the sulfonic acid groups on the side chains are hydrophilic. This is a great advantage because it facilitates water adsorption and consequently proton conduction. To maintain an effective proton transport proper hydration of the membrane is vital while avoiding excessive moisture that could lead to flooding in the CL and GDL \citep{zaidi2009polymer}.
However the membrane can degrade when it is exposed to low humidity and high temperatures. While degrading Nafion can release F$^-$, CO$_2$, SO$_4^{2-}$, SO$_2$ as well as fluorocarbons \citep{teranishi2006}. Besides this form of degradation the electrochemical reaction in a PEMFC can also produce hydrogen peroxide (H$_2$O$_2$) when the entry of oxygen in the PEM reacts with the hydrogen in the anode as shown in the following equation (\ref{eq:h2o2}) \citep{ren2020degradation}:
\begin{equation}
\mathrm{O}_2+2 \mathrm{H}^{+}+2 e^{-} \rightarrow \mathrm{H}_2 \mathrm{O}_2, \mathrm{E}_{\mathrm{O}}=0.695 \mathrm{~V} \text { vs. } \mathrm{SHE}\left(75^{\circ} \mathrm{C}\right)
\label{eq:h2o2}
\end{equation}
Furthermore, H$_2$O$_2$ in the presence of ferrous ions like Fe$^{2+}$ which are released by the BP when corroding can trigger the formation of hydroxyl radicals which attack the membrane as well. It is thought that an incomplete reduction of the oxygen by the Pt catalyst can trigger the production of H$_2$O$_2$ as well \citep{elferjani_coupling_2021}.



\subsection{Department of Energy Targets}

The Deparment of Energy (DOE) of the United States(U.S.) with the help from the U.S. DRIVE partnership has set targets for the components of PEMFC to help FC developers develop them without the need to test the full system
\citep{doe_pemfc_targets}. U.S DRIVE FC team aims to develop a PEMFC system for transportation able to resist 8000 hours and with a mass production cost of 35\$ per Kilowatt (kW) by 2025 \citep{trabia2016}.

Targets of the DOE include specifications for the MEA, PEM, electrocatalysis and bipolar plates. The goal for BPs is to reduce the plate cost from 5,4\$ to 2\$ per kW until 2025. Some other goals include the weight reduction of the BPs and increased corrosion resistance as well as a higher electric conductivity\citep{PEM_MEA_parekh2022recent}. Overall the DOE wants to increase cell performance and at the same time reduce production costs to allow PEMFCs in FCV and fuel cell electrical vehicles (FCEV) becoming an cost effective and green alternative to ICE in the series production.


\subsection{Overpotentials of the PEMFC}
\label{subsec:losses}


\begin{figure}[htbp]
\centering
\includegraphics[width=0.8\textwidth]{Figures/Theorie/Polarization.pdf}
\caption{Polarization curve of a fuel cell including the different losses. Retrieved from Jung et al., page 741 (4) [64].}
\label{fig:losses}
\end{figure}

The Nernst equation \ref{eq:E} calculates the reversible cell potential which is the current that should be drawn by the PEMFC. However the actual measured open-circuit voltage (OCV) is lower than the theoretical one calculated by the equation \citep{Loss_mardle2021examination}.
This deviation can be observed in the figure \ref{fig:losses} \citep{Loss_jung2010dynamic}. This first deviation is caused by the hydrogen (H$_2$) crossover. This occurs when H$_2$ diffuses through the membrane, leading to a mixed potential that lowers the overall open-current potential (OCP). Internal short circuits also lead to OCV losses in this stage as well \citep{Loss_mazzeo2024assessing}.

In addition to the first loss the polarization curve experiences other deviations as the current density starts to grow. Starting with the activation losses then the Ohmic losses and at high current densities the mass transport losses which will all be explained in the following \citep{02_lucia2014overview}.


\subsubsection{Activation Polarization}

The activation loss also called activation polarization loss is driven by the voltage loss caused by the activation energy required for the electrochemical reaction to start as the protons move through the reaction interface. Therefore it is a loss related to the kinetic of the cathode and anode electrodes \citep{Loss_li2022new}. As shown in the image \ref{fig:losses} it takes place at a region with low current densities. It$\eta_{act}$ can be calculated using the following equation (\ref{eq:Loss_N}) \citep{ren2020degradation}.

\begin{equation}
\eta_{\text {act }}=\frac{R T}{\alpha n F} \ln \left(\frac{i_{\text {loss }}}{i_0}\right)
\label{eq:Loss_N}
\end{equation}

In this equation the following parameters are taken into account: F for the Faraday constant, $i_0$ as the exchange current density for the active area of the FC, $\alpha$ as charge transfer coefficient, R is the gas constant and n the number of molecules or atoms. Furthermore, $i_{loss}$ is formed as the addition of $i_{short}$ for the current density of short-circuits and $i_{crossover}$ which is the gas-crossover current density \citep{ren2020degradation,jouin2016}.

\begin{equation}
i_{\text {loss }}=i_{\text {crossover }}+i_{\text {short }}
\end{equation}

It is worth mentioning that the exchange current density of the oxygen reduction reaction (ORR) can be perceived as a limiting factor in low temperature PEMFC like the ones used for the automotive sector \citep{Loss_mazzeo2024assessing}.


\subsubsection{Ohmic Polarization}

As the current density increases, ohmic polarization loss becomes the dominant factor in the polarization curve. Voltage decreases in an almost linear way with increasing current density \citep{Loss_li2022new}. Ohmic losses are associated with the resistance encountered by the flow of the electrons through various components of the FC \citep{Loss_mazzeo2024assessing}. The resistance of the hydrogen ion flow into the electrolyte is a significant factor. This resistance is heavily influenced by membrane's hydration level as well as operating temperatures and current density \citep{springer1991}. Mathematically it can be described with the following equation (\ref{eq:Loss_ohm})\citep{ren2020degradation}.

\begin{equation}
\eta_{\mathrm{ohm}}=\left(R_{\mathrm{ion}}+R_{\mathrm{ele}}+R_{\mathrm{con}}\right) \cdot i
\label{eq:Loss_ohm}
\end{equation}

In this equation R$_{ion}$ represents the ionic resistance, R$_{con}$ the contact resistance and R$_{ele}$ the electronic resistance. For this section the polarization behaves linearly since it is multiplied with the current density ($i$) \citep{ren2020degradation}.

\subsubsection{Concentration Polarization}

At high current densities the concentration polarization or concentration loss occurs. The reactants are consumed very quick during the electrochemical reactions at a high current density. Because of transport and diffusion resistance the availability in of the reactants at the reaction sites decrease which limits the the reactions and thereby the efficiency of the PEMFC \citep{Loss_li2022new}.
The ohmic polarization can be calculated using the following equation (\ref{eq:Loss_con})
\citep{ren2020degradation}:

\begin{equation}
\eta_{\text {con }}=\left(1+\frac{1}{\alpha}\right) \frac{R T}{n F} \ln \left(\frac{i_{\mathrm{L}}}{i_{\mathrm{L}}-i}\right)
\label{eq:Loss_con}
\end{equation}

The parameters of the equation (\ref{eq:Loss_con}) are the same as in the others before that with the only new one being $i_L$ which stands for the limiting current density.

At such high operating it is important to avoid undersupply of the anode which could damage the PEMFC. Therefore, changing the hydrogen-oxygen stoichiometric ratio from 1:1 to 1.5:2.2 can improve the performance of the PEMFC as well as reduce damage caused by the operation on high current densities \citep{liu2024study}.


\subsection{Characterization of PEMFC}

As this thesis includes an endurance run and preliminary investigations to better understand the operating conditions of the PEMFC and identify the optimal point for triggering cell corrosion, this section will detail the in-situ methods employed to characterize the cells. Parameters like the cell potential and the current density can give an insight into the state of health of the cell. By using predefined characterisation curves in-between a specific number of voltage cycles the cell degradation can be tracked. Figure \ref{fig:PolCurve} shows an example of a the polarization curves after a specific number of voltage cycles \citep{mohsin2020electrochemical}.

\begin{figure}[htbp]
\centering
\includegraphics[width=0.7\textwidth]{Figures/Theorie/PolCurve.pdf}
\caption{Example of a polarization curve of a PEMFC after different numbers of voltage cycles (VC) . Retrieved from Mohsin et al., page 24096 (4) [69].}
\label{fig:PolCurve}
\end{figure}


In this polarization curves the potential of the cell is plotted over the current densities. Degradation of the membrane, corrosion, carbon corrosion or as a consequence of it platinum catalyst dissolution causes the polarization curve to have a higher drop in the potential at much lower current densities after more cycles as shown in the aforementioned figure \ref{fig:PolCurve} \citep{Pol_thiele2024realistic}. This mechanisms will be explained in the following section \ref{sec:Degradation}. After a larger number of voltage cycles the higher current densities can no longer be reached as a consequence of the degradation as well as bigger activation, ohmic and concentration losses in the cell \citep{mohsin2020electrochemical}.


\section{Degradation Mechanisms}
\label{sec:Degradation}

Automotive conditions can be very stressful for the PEMFC. Start-stop procedures, idling conditions, operation at maximum power as well as quick changes from full power to stop can speed up the degradation progress of the cell and therefore shorten its lifetime \citep{pei2008}. Accelerated stress tests (AST) are a way of testing the components of a PEMFC in a controlled environment without them being in the actual vehicle. It can shorten the test duration by accelerating the degradation processes and simulating different conditions and automotive scenarios \citep{Pol_thiele2024realistic}. This section will provide information on a few of the most important degradation mechanisms that can be found in a PEMFC like platinum catalyst dissolution, membrane degradation, carbon corrosion and finally corrosion. It is also important to mention that there are a lot more mechanisms which can contribute to the degradation of the fuel cell and that these mechanism impact one another\citep{Pol_thiele2024realistic}.

\newpage


\subsection{Platinum Catalyst Dissolution and Agglomeration}
\label{subsec: Pt}

Carbon-supported platinum nanoparticles in the CL of the PEMFC increase the oxygen reduction reaction (ORR) at the cathode making the cell more efficient. With such an important task it is of utmost importance to understand the degradation mechanism. Studys have shown, that corrosive acidic environments in the PEMFC under a positive potential can lead to platinum dissolving which consequently causes a reduction in the catalyst performance \citep{cherevko2015}.
Pt loss during PEMFC operation is a major contributor to the degradation of the CL. This is driven by processes such as platinum dissolution, Pt-detachment, Pt-migration and Pt-agglomeration. In a study by Luo et al. a 10 cell stack was operated for 200 hours at a temperature of 60 °C. When analysed, the stack showed a reduction from an initial Pt content of 20\% to 13,5\% \citep{luo2010}.

While Pt can remain stable at potentials below 1,188 V at high cell voltages and OCV direct electrochemical dissolution may occur at the cathode. At normal operation conditions or during load cycling the dissolution of Pt is more likely to occur \citep{wallnofer2024main}. Lower electrode potentials as well as the voltage cycling can cause Pt oxide dissolution which can be described by the following equations \citep{takei2016}:


\begin{equation}
\mathrm{Pt} \rightarrow \mathrm{Pt}^{2+}+2 e-\mathrm{E}_0=1.188 \mathrm{~V}
\end{equation}
\begin{equation}
\mathrm{Pt}+\mathrm{H}_2 \mathrm{O}+2 e^{-} \rightarrow \mathrm{PtO}+2 \mathrm{H}^{+} \quad \mathrm{E}_0=0.98 \mathrm{~V}
\end{equation}
\begin{equation}
\mathrm{PtO}+2 \mathrm{H}^{+} \rightarrow \mathrm{Pt}^{2+}+\mathrm{H}_2 \mathrm{O}
\end{equation}

Since water is produced in the reaction (2.21) the higher water content in the ionomer leads to a greater mobilty of the dissolved Pt ions which can facilitate the Ostwald ripening of the particles beneath it \citep{takei2016}.

Platinum migration is another Problem which can degrade the PEMFC by loss of CL performance. The Pt particles may diffuse into the ionomer phase and then precipitate within the membrane (PEM). Furthermore, hydrogen migrating from the anode to the cathode can reduce the Pt ions forming Pt$^{2+}$ and Pt$^{4+}$. This can again cause the oxidation of Pt to PtO as shown in the previous reactions and consequently decrease the cell performance due to the lingering oxygen \citep{pavlivsivc2018platinum,okonkwo2021platinum}. Agglomeration process can facilitate the formation of oxygenated functional groups on the carbon surface which then lead to an increased hydrophilicity of the carbon support. This altered hydrophilicity can influence the displacement of oxygen towards the Pt by controlling the flooding in the CL. Flooding can limit oxygen access to the active reaction sites within the CL and hence decrease the efficiency of the PEMFC \citep{okonkwo2021platinum}.

Losses of activity in the reaction sites can be categorized into two groups. The first one being the unrecoverable losses and the second one are the re-coverable losses. Pt-dettachment as well as agglomeration, dissolution, carbon corrosion and Pt re-deposition are associated with the first group, the unrecoverable losses. Start/ End scenarios expose the cell to very rapid changes in the parameters. Also operating under extreme conditions can accelerate the degradation of the cell and favor the aforementioned mechanisms.
\citep{okonkwo2021platinum}. The recovery loss was linked either to the reduction of platinum oxide or the removal of carbon monoxide which is produced because of the carbon corrosion \citep{okonkwo2021platinum} .

There is also a second way of classifying the degradation mechanisms. Since one degradation mechanism can trigger or favour another mechanism they can also be classified as primary or secondary depending on their ability to start or intensify another mechanism. For example carbon corrosion is a primary mechanism since it can be responsible for Pt agglomeration and detachment leading to an increased degradation \citep{okonkwo2021platinum}.

\subsection{Electrochemical Carbon Corrosion}
\label{subsec: Carbon corrosion}

Since carbon corrosion is a primary degradation mechanism for PEMFCs it is essential to examine this process in greater detail. A deeper understanding of electrochemical carbon corrosion can provide insights into its impact on other mechanisms and especially on the performance and durability of the fuel cell.

Studys have shown, that start-stop cycles of fuel cells primarily initiate surface corrosion of the carbon support in the CL. Repeated cycles of start-stop conditions can modify the crystalline carbon which will be transformed into a more corrosion-prone amorphous carbon \citep{park2016effects}. Due to the carbon corrosion the CL experiences a loss of thickness which results in detachment of the Pt particles especially at the cathode. This mechanism is not only intensified by start-stop cycles but also by square wave cycles and triangular wave cycles. The first one triggering the corrosion on its surface and internally while the second one targets surface defects \citep{zhao2021carbon}. It is also worth mentioning, that results of an AST in which the cell was exposed to various conditions like load change cycles and start-stop cycles the decreasing perfomance could be attributed by one third to the shutdown and startup cycles proving how demanding this step can be for a cell and how it can increase the degradation \citep{zhao2021carbon,lin2015investigating}. Dependening on the cell conditions either one of the following three reactions can lead to carbon corrosion \citep{wallnofer2024main}.

\begin{equation}
\mathrm{C}+2 \mathrm{H}_2 \mathrm{O} \rightarrow \mathrm{CO}_2+4 \mathrm{H}^{+}+4 e^{-} \mathrm{E}_0=0.207 \mathrm{~V}
\end{equation}
\begin{equation}
\mathrm{C}+\mathrm{H}_2 \mathrm{O} \rightarrow \mathrm{CO}+2 \mathrm{H}^{+}+2 e^{-} \mathrm{E}_0=0.518 \mathrm{~V}
\end{equation}
\begin{equation}
\mathrm{CO}+\mathrm{H}_2 \mathrm{O} \rightarrow \mathrm{CO}_2+2 \mathrm{H}^{+}+2 e^{-} \mathrm{E}_0=-0.103 \mathrm{~V}
\end{equation}

Another effect of carbon corrosion is the reduction in the hydrophobicity of the GDL which could be attributed to the loss of PTFE and its hydrophobic properties if the cell is flooded while operating at a high current \citep{pei2008}. As mentioned before carbon corrosion can be increased not only by start-stop conditions but also by high potentials. This can then be observed in the polarization curve causing a bigger activation loss at low current densities \citep{Pol_thiele2024realistic}.

Due to an more hydrophilic behaviour because of the carbon corrosion and loss of PTFE the membrane responds slow to quick changes from high to low load which results in water accumulating on the anode side and therefore a reduced hydrogen supply, furthermore the pressure difference between inlet and outlet on the anode hinders the water from being removed. As a consequence of this when the load is increased again quickly the anode can suffer from partial hydrogen starvation which again intensifies the carbon corrosion because of the high electrode potential forming on the cathode side \citep{Pol_thiele2024realistic}.

Lastly not only the activation polarization is affected by the carbon corrosion but also the ohmic loss is increased. This increase in the ohmic loss results from the decrease activity of the Pt catalyst since the loss in thickness from the CL and its consequent detachment of Pt particles at the cathode weaken its activity \citep{ren2020degradation}. To be more precise the degradation of the porous structure in the CL causes extended pathways for electrons which increase the contact resistance of the PEMFC \citep{wallnofer2024main}.


\subsection{Membrane Degradation}
\label{subsec:membrane degradation}

H2O2 und eisen ionen membran degradation fördern

EDS analysis was performed on the sample tested at RH ¼ 36\% to study Pt dissolution into the membrane since it has been reported that Pt band formation is responsible for membrane degradation [34]. The Pt concentration inside membrane is very low in Fig. 10, indicating that no significant Pt band formation under open circuit conditions. However, any Pt particles that penetrate into the membrane may act as a catalyst for OH free radical direct generation without the H2O2 intermediate and cause membrane degradation \citep{ohma2008}



\subsection{Corrosion}
\label{subsec: BP Corrosion}


Types of corrosion
unifomr corrosion

galvanic corrosion
itergranular corrosion
crevice corrosion
pitting corrosion

the ability of pt to support corrosion particularly at high cathode possibilities is another challenge and can decline under load cycling, poor material combination, and high-temperature activity.

Indeed, the cathode CL can corrode as a result of Pt disintegration, appearing particularly during the fatigue loading and applied high potentials to anode-electrode \citep{matsutani2010}


„which is much more serious in the cathode side. Admittedly, the corrosion of metallic BP in actual fuel cells is almost inevitable even for one with excellent coatings, ascribed to the nonuniformity, defects, and scratches“ \citep{Corr_ren2022corrosion}
%Rephrase corrosion
corrosion characteristics of metallic BP in the PEM fuel cell, especially in the cathode environment revealed the accumulation of metallic elements especially Cr and Fe. Constant testing of MEA 200 h even in fuel cell with carbon coated SS.
\citep{Corr_kumagai2012high}

Corrosion phenomena on the cathode side rib surface of SS316 BP and found highest accumulation of Fe element in the MEA especially in the gas diffusion layer (GDL)
\citep{Corr_mele2010localised}

+ 36
- 0
Content/TitlePage_LES.aux Просмотреть файл

@@ -0,0 +1,36 @@
\relax
\providecommand\hyper@newdestlabel[2]{}
\@setckpt{Content/TitlePage_LES}{
\setcounter{page}{4}
\setcounter{equation}{0}
\setcounter{enumi}{0}
\setcounter{enumii}{0}
\setcounter{enumiii}{0}
\setcounter{enumiv}{0}
\setcounter{footnote}{0}
\setcounter{mpfootnote}{0}
\setcounter{part}{0}
\setcounter{chapter}{0}
\setcounter{section}{0}
\setcounter{subsection}{0}
\setcounter{subsubsection}{0}
\setcounter{paragraph}{0}
\setcounter{subparagraph}{0}
\setcounter{figure}{0}
\setcounter{table}{0}
\setcounter{btxromaniannumeral}{0}
\setcounter{caption@flags}{0}
\setcounter{continuedfloat}{0}
\setcounter{subfigure}{0}
\setcounter{subtable}{0}
\setcounter{LT@tables}{0}
\setcounter{LT@chunks}{0}
\setcounter{NAT@ctr}{0}
\setcounter{parentequation}{0}
\setcounter{float@type}{4}
\setcounter{r@tfl@t}{0}
\setcounter{Item}{0}
\setcounter{Hfootnote}{0}
\setcounter{bookmark@seq@number}{0}
\setcounter{section@level}{0}
}

+ 56
- 0
Content/TitlePage_LES.tex Просмотреть файл

@@ -0,0 +1,56 @@
\begin{titlepage}
%\begin{center}
\noindent Master’s Thesis

\noindent theoretical / experimental
\vspace{2cm}

\noindent {\Large Title of the Thesis in Title Case}
\vspace{0,5cm}

\noindent {\large Carlos Mauricio Platteau}
\vspace{2cm}

\noindent MSPE 123

\noindent 2024/10
\vspace{3cm}

\noindent Remove this and the next page in the print-out; This page is for the pdf-version only.\\
Diese Seite und die darauffolgende in der gedruckten Version entfernen; nur für die PDF-Version.

\newpage
\thispagestyle {empty}
\noindent Remove this page in the print version.

\noindent Diese Seite in der Druckversion entfernen.

\newpage
\thispagestyle {empty}

\begin{minipage}[b][240mm]{150mm}
\includegraphics[angle={0}, width=125mm]{Figures/TitlePage/LS_Energiesysteme_SU_RGB}
\hfill
\vspace{1cm}
\noindent
\begin{tabular}[H]{l l}

Title of Master's Thesis:&\textsc{Modeling and Validation of a Degradation Mechanism} \\
&\textsc{of PEM Fuel Cells in Atoumotive Applications Using The} \\
&\textsc{Example of Bipolar Plate Corrosion} \\
\\
Author:&\textsc{B.Sc.Carlos Mauricio Platteau}\\\\
Enrolment Number: &03674503\\\\
Supervisor BMW:&\textsc{M.Sc. Markus Schwarz}\\\\
Supervisor TUM:&\textsc{M.Sc. Benjamin Steinrücken}\\\\
Assigned by: &Prof. Dr.-Ing. Hartmut Spliethoff\\
&Technical University of Munich\\
&Chair of Energy Systems\\
&Boltzmannstr. 15\\
&85748 Garching\\\\
Assigned:&01.04.2024\\\\
Handed in:&30.10.2024\\\end{tabular}
\vspace{3em}
\end{minipage}
\end{titlepage}
\newpage

+ 64
- 0
Content/TitlePage_ZAE.tex Просмотреть файл

@@ -0,0 +1,64 @@
\begin{titlepage}
\noindent Bachelor’s Thesis / Research Internship / Master’s Thesis

\noindent theoretical / experimental / constructive
\vspace{2cm}

\noindent {\Large Title of the Thesis in Title Case}
\vspace{0,5cm}

\noindent {\large First Name Last Name}
\vspace{2cm}

\noindent MSPE 123

\noindent YYYY/MM
\vspace{3cm}

\noindent Remove this and the next page in the print-out; This page is for the pdf-version only.\\
Diese Seite und die darauffolgende in der gedruckten Version entfernen; nur für die PDF-Version.

\newpage
\thispagestyle {empty}
\noindent Remove this page in the print version.

\noindent Diese Seite in der Druckversion entfernen.

\newpage
\thispagestyle {empty}

\begin{figure}[ht]
\centering
\begin{subfigure}{.75\textwidth}
\includegraphics[height=45mm]{Figures/TitlePage/LS_Energiesysteme_SU_RGB}
\end{subfigure}
\begin{subfigure}{.24\textwidth}
\includegraphics[width=35mm]{Figures/TitlePage/ZAE-Logo_CMYK_600dpi}
\end{subfigure}
\end{figure}

\begin{minipage}[b][110mm]{150mm}
\noindent
\begin{tabular}[H]{l l}
Supervisor:& {\textsc First Name Last Name}\\\\
&Bayerisches Zentrum für Angewandte Energieforschung\\
&Bereich Energiespeicherung\\
&Walther-Meißner-Str. 6\\
&85748 Garching\\
\\\\
Title of Bachelor's Master's Thesis:&\textsc{English Title of Your Thesis in Title Case} \\
%&\textsc{Second Row of the Titel in Title Case} \\
\\
Author:&{\textsc First Name Last Name}\\
Enrolment Number: &0123456789\\\\
Assigned by: &Prof. Dr.-Ing. Hartmut Spliethoff\\
&Technical University of Munich\\
&Chair of Energy Systems\\
&Boltzmannstr. 15\\
&85748 Garching\\\\
Assigned:&DD.MM.YYYY\\
Handed in:&DD.MM.YYYY\\
\end{tabular}
\end{minipage}
\end{titlepage}
\newpage

Двоичные данные
Figures/MainSection/Sumatra_Install_1.JPG Просмотреть файл

До После
Ширина: 643  |  Высота: 525  |  Размер: 46 KiB

Двоичные данные
Figures/MainSection/Sumatra_Install_2.JPG Просмотреть файл

До После
Ширина: 647  |  Высота: 523  |  Размер: 66 KiB

Двоичные данные
Figures/MainSection/modell.jpg Просмотреть файл

До После
Ширина: 726  |  Высота: 531  |  Размер: 62 KiB

+ 131
- 0
Praeambel.tex Просмотреть файл

@@ -0,0 +1,131 @@
%%% EINSTELLUNGEN: Einbinden der benötigten Pakete und grundlegende Einstellungen

%%% DOKUMENTENKLASSE

\documentclass[
headsepline, % Die Kopfzeile wird durch eine horizontale Linie vom Text getrennt
a4paper, % Benutzt DIN-A4-Papier-Format (=default)
11pt, % Schriftgröße
parskip=off, % seitlicher Einzug neuer Absatz on/off
%fleqn, % Mathematische Formeln linksbündig
twoside, % twoside = zweiseitiger Satz
numbers=noenddot, % Die Abschnittsnummerierungen werden immer ohne den letzten Punkt dargestellt, also "1.2.3" statt "1.2.3."
bibliography=totoc, % Bindet das Literaturverzeichnis ins Inhaltsverzeichnis ein
listof=totoc, % Bindet das Tabellenverz. und Abbildungsverz. ins Inhaltsverzeichnis ein (falls vorhanden)
%enabledeprecatedfontcommands % erlaubt alte Befehle wie \sc
]{scrreprt} % Dokumentenklasse Report

\setcounter{tocdepth}{2} % Anzahl Untergliederungsebenen im Inhaltsverzeichnis
\setcounter{secnumdepth}{2} % Anzahl Untergliederungsebenen die nummeriert werden
\usepackage[hyperref=false]{scrhack} % Verhindert Probleme zwischen dem Paketen scrhack und hyperref

%%% FORMATIERUNG

\usepackage[english]{babel} % Überschriften werden von LaTeX in der korrekten Sprache erzeugt
\usepackage[utf8]{inputenc} % Ermöglicht Eingabe von Umlauten
\usepackage{babelbib} % Ermöglicht Bibtex mit deutschen Styles
\usepackage[T1]{fontenc} % Schriftart
\usepackage{lmodern} % Zur Verwendung von Sonderzeichen (z.B allgemeine Gaskonstante) früher:dsfont

%%% TABELLEN
\usepackage{caption} % Soll zukünftig subfig ersetzen.
\usepackage{subcaption} % Soll zukünftig subfig ersetzen.

\usepackage{longtable} % Tabellen länger als eine Seite
\usepackage{booktabs} % Hochwertige Tabellen

%%% SONSTIGE PACKETE DIE VOR DEN NACHFOLGENDEN PAKETEN GELADEN WERDEN
\renewcommand{\baselinestretch}{1.15} % Zeilenabstand 115%
\renewcommand{\belowcaptionskip}{5pt} % Abstand von Bildunterschriften zum Bild
\makeatletter\renewcommand{\@pnumwidth}{2em}\makeatother % Breite der Nummernspalte im Inhaltsverzeichnis von 1.55em erhöhen
\addtokomafont{captionlabel}{\bfseries} % Tabelle, Abbildung in Bildunterschrift fett geschrieben
\usepackage[hang]{footmisc} % für hängenden Einzug bei Fußnoten, Paket für variable Fußnotengestaltung
\usepackage{natbib} % Um Zitirstil zu bearbeiten
\bibpunct{[}{]}{,}{n}{}{;} % Anpassung des Zitierstils
\usepackage{cite} % Handling von Zitierung
\usepackage[novbox]{pdfsync} % Ermöglicht Inverssuche für SumatraPDF

%%% FORMELN

\usepackage{amsmath} % Paket mit vielen Formelumgebungen, u.a. align
\usepackage{mathabx} % enthält drei Schriften für mathematische Symbole: matha, mathb and mathx
\usepackage{chemformula} % Paket um chemische Formeln und chemische Gleichungen zu verwenden. Beispiel zur Verwendung: \ch{CH4 + 2 O2 <-> CO2 + 2 H2O}
\usepackage{siunitx} % Darstellung von Zahlen und Einheiten. Beispiel zur Verwendung: \SI{10}{kW}
\sisetup{locale = DE,per-mode=repeated-symbol} % Optionen für siunitx. Einheiten werden nun durch einen Schrägstrich getrennt

%%% ABBILDUNGEN

% \usepackage[caption=false]{subfig} % Mehrere Bilder nebeneinander, unter gleicher Bildunterschrift und -nummer
% \setlength{\captionwidth}{\columnwidth} % Korrektur für die Option [caption=false]

\usepackage{float} % Paket für Gleitumgebung und erzwingt Positionierung von Floatobjekten mit "`H"'
\makeatletter % Gleiobjekte oben auf nächste Seite setzen
\setlength{\@fptop}{0pt} % Gleiobjekte oben auf nächste Seite setzen
\makeatother % Gleiobjekte oben auf nächste Seite setzen
\pdfminorversion=6 % PDF bis Version 1.5 können eingebunden werden

\usepackage{graphicx} % Ermöglicht die Einbindung von Bildern

\usepackage[figuresright]{rotating} % Damit können Bilder, Tabellen, usw. in landscape Format angezeigt werden
\usepackage{xcolor} % Paket zur Verwendung von Farben

%%% SEITENLAYOUT

\usepackage[automark]{scrlayer-scrpage} % scrpage für Kopf- und Fußzeilen, automark für automatische Aktualisierung der Kolumnentitel
\usepackage{multicol} % Ermöglicht flexiblen Einsatz mehrerer Spalten
\usepackage[verbose]{placeins} % Stellt den Befehl \floatbarrier zur Verfügung. Dieser erzwingt die Positionierung aller Gleitobjekte, die noch nicht platziert wurden. Erst anschließend geht es mit dem Fließtext, der nach der floatbarrier steht, weiter [verbose] Schreibt viele zusätzliche Informationen in die Log-Datei.
\usepackage[babel]{microtype} %das Packet wird an die beim Paket babel getroffene Spracheinstellung angepasst, aktiviert optischen Randausgleich und ermöglicht Zeichendehnung (Standarteinstellung = 2%)

\usepackage[ % Seitenränder
left=28mm, % Breite des linken Rands
right=25mm, % Breite des rechten Rands
bottom=25mm, % Breite des unteren Rands
top=28mm % Breite des oberen Rands
]{geometry}

\setlength{\labelsep}{0.5em} % Einrücktiefe bei der Itemize-Umgebung
\setlength{\parskip}{1ex} % Legt den Abstand zwischen den einzelnen Absätzen fest
\renewcommand{\arraystretch}{1.0} % Zeilenabstand in einer Tabelle
\renewcommand*{\chapterheadstartvskip}{\vspace*{-\topskip}} % Änderung des Standardabstands der Kapitelüberschrift von der Kopfzeile

\pagestyle{scrheadings}
\clearscrheadings
\clearscrplain
\ohead{\pagemark}
\ihead{\headmark}
\automark[section]{chapter} % Für den Druck Seitenzahl stets außen

%%% REGELN FÜR UMBRUCH (nach: cambridge.cls)

\tolerance=500
\hyphenpenalty=250
\exhyphenpenalty=100
\doublehyphendemerits=7500
\finalhyphendemerits=7500
\brokenpenalty=10000
\lefthyphenmin=3
\righthyphenmin=3
\looseness=1
\widowpenalty=10000
\clubpenalty=10000
\displaywidowpenalty=10000

%%% ABSTÄNDE ABKÜRZUNGEN

\newcommand{\zB}{\mbox{z.\,B.}\ } % um z. B. mit den richtigen Abständen zu setzten. Dieser Befehl ersetzt die etwas umständliche Eingabe "z.\,B.", die bewirkt, dass die Abkürzung für "zum Beispiel" typographisch korrekt mit einem kleineren Abstand zwischen dem Punkt und dem B gesetzt wird.
\newcommand{\DHH}{\mbox{d.\,h.}\ } % um d.h. mit den richtigen Abständen zu setzten
\newcommand{\iA}{\mbox{i.\,A.}\ } % um i.A. mit den richtigen Abständen zu setzten

%%%LINKS

\usepackage[
extension=pdf, % um auf andere PDF-Dokumente verweisen zu können
hypertexnames=false,
bookmarksopen,
pdfnewwindow
, colorlinks % Links ohne Umrandungen in zu wählender Farbe
, linkcolor=black % Farbe interner Verweise
, filecolor=black % Farbe externer Verweise
, citecolor=black % Farbe von Zitaten
, urlcolor=black % Farbe von Zitaten
]{hyperref}

+ 1952
- 0
dinatles.bst
Разница между файлами не показана из-за своего большого размера
Просмотреть файл


+ 1952
- 0
english_dinatles.bst
Разница между файлами не показана из-за своего большого размера
Просмотреть файл


+ 21
- 0
texput.log Просмотреть файл

@@ -0,0 +1,21 @@
This is pdfTeX, Version 3.141592653-2.6-1.40.24 (TeX Live 2022) (preloaded format=pdflatex 2023.1.20) 2 OCT 2024 15:36
entering extended mode
restricted \write18 enabled.
%&-line parsing enabled.
**Bibliography.tex

! Emergency stop.
<*> Bibliography.tex
*** (job aborted, file error in nonstop mode)

Here is how much of TeX's memory you used:
3 strings out of 478268
108 string characters out of 5846347
289381 words of memory out of 5000000
18314 multiletter control sequences out of 15000+600000
469259 words of font info for 28 fonts, out of 8000000 for 9000
1141 hyphenation exceptions out of 8191
0i,0n,0p,1b,6s stack positions out of 10000i,1000n,20000p,200000b,200000s
! ==> Fatal error occurred, no output PDF file produced!

Загрузка…
Отмена
Сохранить