\begin{thebibliography}{86} \providecommand{\natexlab}[1]{#1} \providecommand{\url}[1]{\texttt{#1}} \expandafter\ifx\csname urlstyle\endcsname\relax \providecommand{\doi}[1]{doi: #1}\else \providecommand{\doi}{doi: \begingroup \urlstyle{rm}\Url}\fi \bibitem[{Intergovernmental Panel on Climate Change (IPCC)}(2018)]{01_ipcc_sr15_2018} {Intergovernmental Panel on Climate Change (IPCC)}. \newblock Global warming of 1.5°c: An ipcc special report, 2018. \newblock URL \url{https://www.ipcc.ch/sr15/}. \newblock Accessed: 2024-08-27. \bibitem[Xu and Ramanathan(2017)]{01_xu_ramanathan_2017} Yangyang Xu and Veerabhadran Ramanathan. \newblock Well below 2$\degree$ c : Mitigation strategies for avoiding dangerous to catastrophic climate changes. \newblock \emph{Proceedings of the National Academy of Sciences}, 114\penalty0 (39), 2017. \newblock ISSN 0027-8424, 1091-6490. \newblock URL \url{https://pnas.org/doi/full/10.1073/pnas.1618481114}. \newblock pages 10315--10323. \bibitem[of~Germany(2024)]{01_E_klimaschutzgesetz} Federal~Government of~Germany. \newblock Ein plan fürs klima, 2024. \newblock URL \url{https://www.bundesregierung.de/breg-de/themen/tipps-fuer-verbraucher/klimaschutzgesetz-2197410}. \newblock Accessed: 2024-08-26. \bibitem[Umweltbundesamt(2024{\natexlab{a}})]{01_umweltbundesamt_treibhausgas_eu} Umweltbundesamt. \newblock Treibhausgas-emissionen in der europäischen union: Trends, 2024{\natexlab{a}}. \newblock URL \url{https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-in-der-europaeischen-union#trends}. \newblock Accessed: 2024-08-27. \bibitem[on~Climate Change~(IPCC)(2021)]{01_ipcc_ar6_wg1_2021} Intergovernmental~Panel on~Climate Change~(IPCC). \newblock Ipcc ar6 working group i summary for policymakers, 2021. \newblock URL \url{https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf}. \newblock pages 6-7, Accessed: 2024-08-27. \bibitem[Umweltbundesamt(2024{\natexlab{b}})]{01_umweltbundesamt_verkehr_emissionen} Umweltbundesamt. \newblock Emissionen des verkehrs: Verkehr belastet luft und klima - minderungsziele der bundesregierung, 2024{\natexlab{b}}. \newblock URL \url{https://www.umweltbundesamt.de/daten/verkehr/emissionen-des-verkehrs#verkehr-belastet-luft-und-klima-minderungsziele-der-bundesregierung}. \newblock Accessed: 2024-08-27. \bibitem[(Destatis)(2024)]{01_destatis_co2_strassenverkehr} Statistisches~Bundesamt (Destatis). \newblock Co2-emissionen im straßenverkehr in europa, 2024. \newblock URL \url{https://www.destatis.de/Europa/DE/Thema/Umwelt-Energie/CO2_Strassenverkehr.html}. \newblock Accessed: 2024-08-27. \bibitem[Nations(2023)]{01_un_climatechange_causes_2023} United Nations. \newblock Causes and effects of climate change, 2023. \newblock URL \url{https://www.un.org/en/climatechange/science/causes-effects-climate-change}. \newblock Accessed: 2024-08-27. \bibitem[Wilberforce et~al.(2016)Wilberforce, Alaswad, Palumbo, Dassisti, and Olabi]{01_wilberforce_advances_2016} Tabbi Wilberforce, A.~Alaswad, A.~Palumbo, M.~Dassisti, and A.G. Olabi. \newblock Advances in stationary and portable fuel cell applications. \newblock \emph{International Journal of Hydrogen Energy}, 41\penalty0 (37):\penalty0 16509--16522, October 2016. \newblock ISSN 03603199. \newblock \doi{10.1016/j.ijhydene.2016.02.057}. \newblock URL \url{https://linkinghub.elsevier.com/retrieve/pii/S0360319915315822}. \bibitem[Wilberforce et~al.(2017)Wilberforce, El-Hassan, Khatib, Al~Makky, Baroutaji, Carton, and Olabi]{01_wilberforce_developments_2017} Tabbi Wilberforce, Zaki El-Hassan, F.N. Khatib, Ahmed Al~Makky, Ahmad Baroutaji, James~G. Carton, and Abdul~G. Olabi. \newblock Developments of electric cars and fuel cell hydrogen electric cars. \newblock \emph{International Journal of Hydrogen Energy}, 42\penalty0 (40):\penalty0 25695--25734, October 2017. \newblock ISSN 03603199. \newblock \doi{10.1016/j.ijhydene.2017.07.054}. \newblock URL \url{https://linkinghub.elsevier.com/retrieve/pii/S036031991732791X}. \bibitem[Wang et~al.(2018)Wang, Zhang, Lu, Wang, and Li]{wang_preparation_2018} Yanli Wang, Shenghua Zhang, Zhaoxia Lu, Lisheng Wang, and Weihua Li. \newblock Preparation and performances of electrically conductive {Nb}-doped {TiO2} coatings for 316 stainless steel bipolar plates of proton-exchange membrane fuel cells. \newblock \emph{Corrosion Science}, 142:\penalty0 249--257, September 2018. \newblock ISSN 0010938X. \newblock \doi{10.1016/j.corsci.2018.07.034}. \newblock URL \url{https://linkinghub.elsevier.com/retrieve/pii/S0010938X17317900}. \bibitem[Elferjani et~al.(2021)Elferjani, Serre, Ter-Ovanessian, and Normand]{elferjani_coupling_2021} I.~Elferjani, G.~Serre, B.~Ter-Ovanessian, and B.~Normand. \newblock A coupling approach between metallic bipolar plates corrosion and membrane chemical degradation in the proton exchange membrane fuel cells. \newblock \emph{International Journal of Hydrogen Energy}, 46\penalty0 (63):\penalty0 32226--32241, September 2021. \newblock ISSN 03603199. \newblock \doi{10.1016/j.ijhydene.2021.06.215}. \newblock URL \url{https://linkinghub.elsevier.com/retrieve/pii/S0360319921025039}. \bibitem[Baroutaji et~al.(2015{\natexlab{a}})Baroutaji, Carton, Sajjia, and Olabi]{02_baroutaji2015materials} Ahmad Baroutaji, JG~Carton, Mustafa Sajjia, and Abdul~Ghani Olabi. \newblock Materials in pem fuel cells. \newblock 2015{\natexlab{a}}. \bibitem[Lucia(2014)]{02_lucia2014overview} Umberto Lucia. \newblock Overview on fuel cells. \newblock \emph{Renewable and Sustainable Energy Reviews}, 30:\penalty0 164--169, 2014. \newblock pages 164-169. \bibitem[Wang et~al.(2020)Wang, Seo, Wang, Zamel, Jiao, and Adroher]{02_wang2020fundamentals} Yun Wang, Bongjin Seo, Bowen Wang, Nada Zamel, Kui Jiao, and Xavier~Cordobes Adroher. \newblock Fundamentals, materials, and machine learning of polymer electrolyte membrane fuel cell technology. \newblock \emph{Energy and AI}, 1:\penalty0 100014, 2020. \newblock page 100014. \bibitem[Abderezzak(2018)]{02_Abderezzak2018} B.~Abderezzak. \newblock \emph{Introduction to Transfer Phenomena in PEM Fuel Cells}. \newblock Elsevier, 1st edition, 2018. \newblock page = 16. \bibitem[Hauser(2021)]{SOFC_hauser2021effects} Michael~Maximilian Hauser. \newblock \emph{Effects of Tars on Solid Oxide Fuel Cells}. \newblock PhD thesis, Technische Universit{\"a}t M{\"u}nchen, 2021. \bibitem[Lin et~al.(2024)Lin, Kerscher, Herrmann, Steinrücken, and Spliethoff]{SOFC_lin_analysis_2024} Chen Lin, Florian Kerscher, Stephan Herrmann, Benjamin Steinrücken, and Hartmut Spliethoff. \newblock Analysis on temperature uniformity in methane-rich internal reforming solid oxide fuel cells ({SOFCs}). \newblock \emph{International Journal of Hydrogen Energy}, 57, February 2024. \newblock ISSN 03603199. \newblock \doi{10.1016/j.ijhydene.2024.01.071}. \newblock URL \url{https://linkinghub.elsevier.com/retrieve/pii/S0360319924000831}. \newblock pages 769--788. \bibitem[Haberman and Young(2004)]{SOFC_Haberman2004} B.~A. Haberman and J.~B. Young. \newblock Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell. \newblock \emph{International Journal of Heat and Mass Transfer}, 47\penalty0 (17):\penalty0 3617--3629, 2004. \newblock \doi{10.1016/j.ijheatmasstransfer.2004.03.009}. \bibitem[Buttler and Spliethoff(2016)]{SOFC_WGS_Buttler2016} A.~Buttler and H.~Spliethoff. \newblock Kampf der studien. \newblock Technical report, Lehrstuhl für Energiesysteme, 2016. \bibitem[Contreras et~al.(2021)Contreras, Almarza, and Rinc{\'o}n]{MCFScontreras2021molten} Ricardo~R Contreras, Jorge Almarza, and Luis Rinc{\'o}n. \newblock Molten carbonate fuel cells: a technological perspective and review. \newblock \emph{Energy Sources, Part A: Recovery, Utilization, and Environmental Effects}, pages 1--15, 2021. \bibitem[Cui et~al.(2021)Cui, Li, Gong, Wei, Hou, Jiang, Yao, and Ma]{MCFS_cui2021review} Can Cui, Shuangbin Li, Junyi Gong, Keyan Wei, Xiangjun Hou, Cairong Jiang, Yali Yao, and Jianjun Ma. \newblock Review of molten carbonate-based direct carbon fuel cells. \newblock \emph{Materials for Renewable and Sustainable Energy}, 10:\penalty0 1--24, 2021. \bibitem[McLean et~al.(2002)McLean, Niet, Prince-Richard, and Djilali]{AFC_mclean2002assessment} GF~McLean, T~Niet, S~Prince-Richard, and N~Djilali. \newblock An assessment of alkaline fuel cell technology. \newblock \emph{International Journal of Hydrogen Energy}, 27\penalty0 (5):\penalty0 507--526, 2002. \newblock page 513. \bibitem[Al-Saleh et~al.(1994{\natexlab{a}})Al-Saleh, Gultekin, Al-Zakri, and Celiker]{AFC_AlSaleh1994_CO2} M.A. Al-Saleh, S.~Gultekin, A.S. Al-Zakri, and H.~Celiker. \newblock Effect of carbon dioxide on the performance of ni=ptfe and ag=ptfe electrodes in an alkaline fuel cell. \newblock \emph{Journal of Applied Electrochemistry}, 24:\penalty0 575--580, 1994{\natexlab{a}}. \bibitem[Al-Saleh et~al.(1994{\natexlab{b}})Al-Saleh, Gultekin, Al-Zakri, and Celiker]{AFC_AlSaleh1994_Ni} M.A. Al-Saleh, S.~Gultekin, A.S. Al-Zakri, and H.~Celiker. \newblock Performance of porous nickel electrode for alkaline h2=o2 fuel cell. \newblock \emph{International Journal of Hydrogen Energy}, 19:\penalty0 713--718, 1994{\natexlab{b}}. \bibitem[Arrigoni et~al.(2022)Arrigoni, Arosio, Basso~Peressut, Latorrata, and Dotelli]{PEM_Atuomotive_arrigoni2022greenhouse} Alessandro Arrigoni, Valeria Arosio, Andrea Basso~Peressut, Saverio Latorrata, and Giovanni Dotelli. \newblock Greenhouse gas implications of extending the service life of pem fuel cells for automotive applications: A life cycle assessment. \newblock \emph{Clean Technologies}, 4\penalty0 (1):\penalty0 132--148, 2022. \bibitem[O'hayre et~al.(2016)O'hayre, Cha, Colella, and Prinz]{Fundamentals_o2016fuel} Ryan O'hayre, Suk-Won Cha, Whitney Colella, and Fritz~B Prinz. \newblock \emph{Fuel cell fundamentals}. \newblock John Wiley \& Sons, 2016. \bibitem[Scherer(2012)]{Fundamentals_scherer2012fuel} Günther~G Scherer. \newblock Fuel cell types and their electrochemistry. \newblock In \emph{Fuel Cells: Selected Entries from the Encyclopedia of Sustainability Science and Technology}, pages 97--119. Springer, 2012. \bibitem[Barbir(2008)]{Fund_barbir2008fuel} Frano Barbir. \newblock Fuel cell basic chemistry, electrochemistry and thermodynamics. \newblock In \emph{Mini-Micro Fuel Cells: Fundamentals and Applications}, pages 13--26. Springer, 2008. \bibitem[Omran et~al.(2021)Omran, Lucchesi, Smith, Alaswad, Amiri, Wilberforce, Sodr{\'e}, and Olabi]{F_omran2021mathematical} Abdelnasir Omran, Alessandro Lucchesi, David Smith, Abed Alaswad, Amirpiran Amiri, Tabbi Wilberforce, Jos{\'e}~Ricardo Sodr{\'e}, and AG~Olabi. \newblock Mathematical model of a proton-exchange membrane (pem) fuel cell. \newblock \emph{International Journal of Thermofluids}, 11:\penalty0 100110, 2021. \bibitem[Sahu et~al.(2014)Sahu, Krishna, Biswas, and Das]{Nernst_sahu2014performance} Ishwar~Prasad Sahu, Gali Krishna, Manojit Biswas, and Mihir~Kumar Das. \newblock Performance study of pem fuel cell under different loading conditions. \newblock \emph{Energy Procedia}, 54:\penalty0 468--478, 2014. \bibitem[Mardle et~al.(2021{\natexlab{a}})Mardle, Cerri, Suzuki, and El-Kharouf]{Nernst_mardle2021examination} Peter Mardle, Isotta Cerri, Toshiyuki Suzuki, and Ahmad El-Kharouf. \newblock An examination of the catalyst layer contribution to the disparity between the nernst potential and open circuit potential in proton exchange membrane fuel cells. \newblock \emph{Catalysts}, 11\penalty0 (8):\penalty0 965, 2021{\natexlab{a}}. \bibitem[Xu et~al.(2020)Xu, Qiu, Yi, Peng, and Lai]{PEMSchem_xu2020towards} Zhutian Xu, Diankai Qiu, Peiyun Yi, Linfa Peng, and Xinmin Lai. \newblock Towards mass applications: A review on the challenges and developments in metallic bipolar plates for pemfc. \newblock \emph{Progress in natural science: materials international}, 30\penalty0 (6):\penalty0 815--824, 2020. \bibitem[Baroutaji et~al.(2015{\natexlab{b}})Baroutaji, Carton, Sajjia, and Olabi]{PEM_baroutaji2015materials} Ahmad Baroutaji, JG~Carton, Mustafa Sajjia, and Abdul~Ghani Olabi. \newblock Materials in pem fuel cells. \newblock pages 4--11, 2015{\natexlab{b}}. \bibitem[{U.S. Department of Energy}(2024)]{doe_pemfc_targets} {U.S. Department of Energy}. \newblock Doe technical targets for polymer electrolyte membrane fuel cell components, 2024. \newblock URL \url{https://www.energy.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components}. \newblock Accessed: 2024-09-16. \bibitem[Antunes et~al.(2010)Antunes, Oliveira, Ett, and Ett]{antunes2010} R.A. Antunes, M.C.L. Oliveira, G.~Ett, and V.~Ett. \newblock Corrosion of metal bipolar plates for pem fuel cells: A review. \newblock \emph{International Journal of Hydrogen Energy}, 35\penalty0 (8):\penalty0 3632--3647, 2010. \newblock \doi{10.1016/j.ijhydene.2010.01.059}. \bibitem[Li and Sabir(2005)]{SSweight_li2005review} Xianguo Li and Imad Sabir. \newblock Review of bipolar plates in pem fuel cells: Flow-field designs. \newblock \emph{International Journal of Hydrogen Energy}, 30\penalty0 (4):\penalty0 359--371, 2005. \newblock \doi{10.1016/j.ijhydene.2004.09.019}. \bibitem[Leng et~al.(2020)Leng, Ming, Yang, and Zhang]{Automotive_leng2020} Y.~Leng, P.~Ming, D.~Yang, and C.~Zhang. \newblock J. power sources 451 (2020) 227783. \newblock \emph{Journal of Power Sources}, 451:\penalty0 227783, 2020. \newblock \doi{10.1016/j.jpowsour.2019.227783}. \bibitem[{Toyota Motor Corporation}(2021)]{toyota_technical_review_2021} {Toyota Motor Corporation}. \newblock Toyota technical review, vol. 66, 2021. \newblock URL \url{https://global.toyota/pages/global_toyota/mobility/technology/toyota-technical-review/TTR_Vol66_E.pdf}. \newblock Accessed: 2024-09-16. \bibitem[{BMW Group}(2024)]{bmw_hydrogen_2024} {BMW Group}. \newblock Hydrogen as a drive technology, 2024. \newblock URL \url{https://www.bmwgroup.com/en/innovation/drive-technologies/hydrogen.html}. \newblock Accessed: 2024-09-16. \bibitem[Eom et~al.(2012)Eom, Cho, Nam, Lim, Jang, Kim, Hong, and Yang]{eom2012} K.~Eom, E.~Cho, S.-W. Nam, T.-H. Lim, J.H. Jang, H.-J. Kim, B.K. Hong, and Y.C. Yang. \newblock Degradation behavior of a polymer electrolyte membrane fuel cell employing metallic bipolar plates under reverse current condition. \newblock \emph{Electrochimica Acta}, 78:\penalty0 324--330, 2012. \newblock \doi{10.1016/j.electacta.2012.06.023}. \bibitem[Sulek et~al.(2011)Sulek, Adams, Kaberline, Ricketts, and Waldecker]{sulek2011} M.~Sulek, J.~Adams, S.~Kaberline, M.~Ricketts, and J.R. Waldecker. \newblock Investigation of stainless steel bipolar plates for pem fuel cells: Corrosion and contact resistance measurements. \newblock \emph{Journal of Power Sources}, 196:\penalty0 8967--8972, 2011. \newblock \doi{10.1016/j.jpowsour.2011.06.048}. \bibitem[Papadias et~al.(2015)Papadias, Ahluwalia, Thomson, Meyer~III, Brady, Wang, Turner, Mukundan, and Borup]{papadias2015degradation} Dionissios~D Papadias, Rajesh~K Ahluwalia, Jeffery~K Thomson, Harry~M Meyer~III, Michael~P Brady, Heli Wang, John~A Turner, Rangachary Mukundan, and Rod Borup. \newblock Degradation of ss316l bipolar plates in simulated fuel cell environment: Corrosion rate, barrier film formation kinetics and contact resistance. \newblock \emph{Journal of Power Sources}, 273:\penalty0 1237--1249, 2015. \bibitem[Feng et~al.(2011)Feng, Wu, Li, Cai, and Chu]{feng2011} K.~Feng, G.S. Wu, Z.G. Li, X.~Cai, and P.K. Chu. \newblock Degradation of polymer electrolyte membrane fuel cells with stainless steel bipolar plates. \newblock \emph{International Journal of Hydrogen Energy}, 36:\penalty0 13032--13042, 2011. \newblock \doi{10.1016/j.ijhydene.2011.07.113}. \bibitem[Lim et~al.(2021)Lim, Majlan, Tajuddin, Husaini, Daud, Radzuan, and Haque]{MEA_lim2021comparison} Bee~Huah Lim, Edy~Herianto Majlan, Ahmad Tajuddin, Teuku Husaini, Wan Ramli~Wan Daud, Nabilah Afiqah~Mohd Radzuan, and Md~Ahsanul Haque. \newblock Comparison of catalyst-coated membranes and catalyst-coated substrate for pemfc membrane electrode assembly: A review. \newblock \emph{Chinese Journal of Chemical Engineering}, 33:\penalty0 1--16, 2021. \bibitem[Lapicque et~al.(2012)Lapicque, Bonnet, Huang, and Chatillon]{MEA_lapicque2012} F.~Lapicque, C.~Bonnet, B.T. Huang, and Y.~Chatillon. \newblock Analysis and evaluation of aging phenomena in pemfcs. \newblock In A.C.E. Sundmacher, editor, \emph{Fuel Cell Engineering}, pages 265--330. Elsevier, Amsterdam, 2012. \bibitem[Bhosale et~al.(2020)Bhosale, Ghosh, and Assaud]{MEA_bhosale2020} A.~C. Bhosale, P.~C. Ghosh, and L.~Assaud. \newblock Preparation methods of membrane electrode assemblies for proton exchange membrane fuel cells and unitized regenerative fuel cells: A review. \newblock \emph{Renewable and Sustainable Energy Reviews}, 133:\penalty0 110286, 2020. \newblock \doi{10.1016/j.rser.2020.110286}. \bibitem[Parekh(2022)]{PEM_MEA_parekh2022recent} Abhi Parekh. \newblock Recent developments of proton exchange membranes for pemfc: A review. \newblock \emph{Frontiers in Energy Research}, 10:\penalty0 956132, 2022. \bibitem[Liew et~al.(2014)Liew, Daud, Ghasemi, Leong, Lim, and Ismail]{Pt_liew2014} K.~Ben Liew, W.R.W. Daud, M.~Ghasemi, J.X. Leong, S.~Su Lim, and M.~Ismail. \newblock Non-pt catalyst as oxygen reduction reaction in microbial fuel cells: a review. \newblock \emph{International Journal of Hydrogen Energy}, 39\penalty0 (10):\penalty0 4870--4883, 2014. \newblock \doi{10.1016/j.ijhydene.2014.01.062}. \bibitem[Thiele et~al.(2024{\natexlab{a}})Thiele, Yang, Dirkes, Wick, and Pischinger]{thiele2024realistic} Paul Thiele, Yue Yang, Steffen Dirkes, Maximilian Wick, and Stefan Pischinger. \newblock Realistic accelerated stress tests for pem fuel cells: Test procedure development based on standardized automotive driving cycles. \newblock \emph{international journal of hydrogen energy}, 52:\penalty0 1065--1080, 2024{\natexlab{a}}. \bibitem[Zamel et~al.(2011)Zamel, Litovsky, Shakhshir, et~al.]{GDL_zamel2011} N.~Zamel, E.~Litovsky, S.~Shakhshir, et~al. \newblock Measurement of in-plane thermal conductivity of carbon paper diffusion media in the temperature range of -20 °c to +120 °c. \newblock \emph{Applied Energy}, 88:\penalty0 3042--3050, 2011. \newblock \doi{10.1016/j.apenergy.2011.02.008}. \bibitem[Ijaodola et~al.(2019)Ijaodola, El-Hassan, Ogungbemi, Khatib, Wilberforce, Thompson, and Olabi]{ijaodola2019} O.S. Ijaodola, Z.~El-Hassan, E.~Ogungbemi, F.N. Khatib, T.~Wilberforce, J.~Thompson, and A.G. Olabi. \newblock A review of polymer electrolyte membrane fuel cell models for application to automotive systems. \newblock \emph{Energy}, 179:\penalty0 246--267, 2019. \newblock \doi{10.1016/j.energy.2019.03.126}. \bibitem[Majlan et~al.(2018)Majlan, Rohendi, Daud, Husaini, and Haque]{majlan2018} E.H. Majlan, D.~Rohendi, W.R.W. Daud, T.~Husaini, and M.A. Haque. \newblock A review of polymer electrolyte membrane fuel cell (pemfc) durability: Degradation mechanisms and mitigation strategies. \newblock \emph{Renewable and Sustainable Energy Reviews}, 89:\penalty0 117--134, 2018. \newblock \doi{10.1016/j.rser.2018.03.007}. \bibitem[Malek et~al.(2011)Malek, Mashio, and Eikerling]{CT_malek2011} K.~Malek, T.~Mashio, and M.~Eikerling. \newblock Microstructure of catalyst layers in pem fuel cells redefined: a computational approach. \newblock \emph{Electrocatalysis}, 2\penalty0 (2):\penalty0 141--157, 2011. \newblock \doi{10.1007/s12678-011-0047-0}. \bibitem[Hnát et~al.(2019)Hnát, Plevova, Tufa, Zitka, Paidar, and Bouzek]{hnat2019} J.~Hnát, M.~Plevova, R.A. Tufa, J.~Zitka, M.~Paidar, and K.~Bouzek. \newblock Development and testing of a novel catalyst-coated membrane with platinum-free catalysts for alkaline water electrolysis. \newblock \emph{International Journal of Hydrogen Energy}, 44:\penalty0 17493--17504, 2019. \newblock \doi{10.1016/j.ijhydene.2019.05.067}. \bibitem[Zamel(2016)]{ink_zamel2016catalyst} Nada Zamel. \newblock The catalyst layer and its dimensionality--a look into its ingredients and how to characterize their effects. \newblock \emph{Journal of Power Sources}, 309:\penalty0 141--159, 2016. \bibitem[Ghassemzadeh et~al.(2010)Ghassemzadeh, Kreuer, Maier, and Muller]{ghassemzadeh2010chemical} Lida Ghassemzadeh, Klaus-Dieter Kreuer, Joachim Maier, and Klaus Muller. \newblock Chemical degradation of nafion membranes under mimic fuel cell conditions as investigated by solid-state nmr spectroscopy. \newblock \emph{The Journal of Physical Chemistry C}, 114\penalty0 (34):\penalty0 14635--14645, 2010. \bibitem[Okonkwo et~al.(2021{\natexlab{a}})Okonkwo, Belgacem, Emori, and Uzoma]{okonkwo2021nafion} Paul~C Okonkwo, Ikram~Ben Belgacem, Wilfred Emori, and Paul~C Uzoma. \newblock Nafion degradation mechanisms in proton exchange membrane fuel cell (pemfc) system: A review. \newblock \emph{International journal of hydrogen energy}, 46\penalty0 (55):\penalty0 27956--27973, 2021{\natexlab{a}}. \bibitem[Zaidi and Matsuura(2009)]{zaidi2009polymer} SM~Javaid Zaidi and Takeshi Matsuura. \newblock \emph{Polymer membranes for fuel cells}. \newblock Springer, 2009. \bibitem[Teranishi et~al.(2006)Teranishi, Kawata, Tsushima, and Hirai]{teranishi2006} K.~Teranishi, K.~Kawata, S.~Tsushima, and S.~Hirai. \newblock Degradation mechanism of pemfc under open circuit operation. \newblock \emph{Electrochemical and Solid-State Letters}, 9\penalty0 (10):\penalty0 475--477, 2006. \newblock \doi{10.1149/1.2227524}. \bibitem[Ren et~al.(2020)Ren, Pei, Li, Wu, Chen, and Huang]{ren2020degradation} Peng Ren, Pucheng Pei, Yuehua Li, Ziyao Wu, Dongfang Chen, and Shangwei Huang. \newblock Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions. \newblock \emph{Progress in Energy and Combustion Science}, 80:\penalty0 100859, 2020. \bibitem[Trabia et~al.(2016)Trabia, Hwang, and Kim]{trabia2016} S.~Trabia, T.~Hwang, and K.J. Kim. \newblock A fabrication method of unique nafion shapes by painting for ionic polymer-metal composites. \newblock \emph{Smart Materials and Structures}, 25:\penalty0 085006--085021, 2016. \newblock \doi{10.1088/0964-1726/25/8/085006}. \bibitem[Mardle et~al.(2021{\natexlab{b}})Mardle, Cerri, Suzuki, and El-Kharouf]{Loss_mardle2021examination} Peter Mardle, Isotta Cerri, Toshiyuki Suzuki, and Ahmad El-Kharouf. \newblock An examination of the catalyst layer contribution to the disparity between the nernst potential and open circuit potential in proton exchange membrane fuel cells. \newblock \emph{Catalysts}, 11\penalty0 (8):\penalty0 965, 2021{\natexlab{b}}. \bibitem[Jung and Ahmed(2010)]{Loss_jung2010dynamic} Jee-Hoon Jung and Shehab Ahmed. \newblock Dynamic model of pem fuel cell using real-time simulation techniques. \newblock \emph{Journal of Power Electronics}, 10\penalty0 (6):\penalty0 739--748, 2010. \bibitem[Mazzeo et~al.(2024)Mazzeo, Di~Napoli, and Carello]{Loss_mazzeo2024assessing} Francesco Mazzeo, Luca Di~Napoli, and Massimiliana Carello. \newblock Assessing open circuit voltage losses in pemfcs: A new methodological approach. \newblock \emph{Energies}, 17\penalty0 (11):\penalty0 2785, 2024. \bibitem[Li et~al.(2022)Li, Luo, Yang, and Ma]{Loss_li2022new} Jianwei Li, Lei Luo, Qingqing Yang, and Rui Ma. \newblock A new fuel cell degradation model indexed by proton exchange membrane thickness derived from polarization curve. \newblock \emph{IEEE Transactions on Transportation Electrification}, 9\penalty0 (4):\penalty0 5061--5073, 2022. \bibitem[Jouin et~al.(2016)Jouin, Gouriveau, Hissel, Péra, and Zerhouni]{jouin2016} M.~Jouin, R.~Gouriveau, D.~Hissel, M.-C. Péra, and N.~Zerhouni. \newblock Degradations analysis and aging modeling for health assessment and prognostics of pemfc. \newblock \emph{Reliability Engineering \& System Safety}, 148:\penalty0 78--95, 2016. \newblock \doi{10.1016/j.ress.2015.12.003}. \bibitem[Springer et~al.(1991)Springer, Zawodzinski, and Gottesfeld]{springer1991} T.E. Springer, T.A. Zawodzinski, and S.~Gottesfeld. \newblock Polymer electrolyte fuel cell model. \newblock \emph{Journal of The Electrochemical Society}, 138\penalty0 (8):\penalty0 2334--2342, 1991. \newblock \doi{10.1149/1.2085971}. \bibitem[Liu et~al.(2024)Liu, Zhao, Fu, Lin, Zhu, Wang, and Yuan]{liu2024study} Qi~Liu, Zijian Zhao, Weidong Fu, Zhe Lin, Zuchao Zhu, Haifeng Wang, and Yunchao Yuan. \newblock Study on the influence of the hydrogen--oxygen stoichiometric ratio on the power performance improvement in a large-scale pemfc stack. \newblock \emph{Journal of Power Sources}, 620:\penalty0 235279, 2024. \bibitem[Mohsin et~al.(2020)Mohsin, Raza, Mohsin-ul Mulk, Yousaf, and Hacker]{mohsin2020electrochemical} Munazza Mohsin, Rizwan Raza, M~Mohsin-ul Mulk, Abida Yousaf, and Viktor Hacker. \newblock Electrochemical characterization of polymer electrolyte membrane fuel cells and polarization curve analysis. \newblock \emph{International Journal of Hydrogen Energy}, 45\penalty0 (45):\penalty0 24093--24107, 2020. \bibitem[Thiele et~al.(2024{\natexlab{b}})Thiele, Yang, Dirkes, Wick, and Pischinger]{Pol_thiele2024realistic} Paul Thiele, Yue Yang, Steffen Dirkes, Maximilian Wick, and Stefan Pischinger. \newblock Realistic accelerated stress tests for pem fuel cells: Test procedure development based on standardized automotive driving cycles. \newblock \emph{international journal of hydrogen energy}, 52:\penalty0 1065--1080, 2024{\natexlab{b}}. \bibitem[Pei et~al.(2008)Pei, Chang, and Tang]{pei2008} P.~Pei, Q.~Chang, and T.~Tang. \newblock A quick evaluating method for automotive fuel cell lifetime. \newblock \emph{International Journal of Hydrogen Energy}, 33\penalty0 (14):\penalty0 3829--3836, 2008. \newblock ISSN 0360-3199. \newblock \doi{10.1016/j.ijhydene.2008.04.048}. \bibitem[Cherevko et~al.(2015)Cherevko, Keeley, Geiger, Zeradjanin, Hodnik, Kulyk, et~al.]{cherevko2015} S.~Cherevko, G.P. Keeley, S.~Geiger, A.R. Zeradjanin, N.~Hodnik, N.~Kulyk, et~al. \newblock Dissolution of platinum in the operational range of fuel cells. \newblock \emph{ChemElectroChem}, 2:\penalty0 1471--1479, 2015. \newblock \doi{10.1002/celc.201500207}. \bibitem[Luo et~al.(2010)Luo, Xie, Zou, Zhou, and Wang]{luo2010} G.~Luo, L.~Xie, Z.~Zou, Q.~Zhou, and J.-Y. Wang. \newblock Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: effects of temperature and ph. \newblock \emph{Applied Energy}, 87:\penalty0 3710--3717, 2010. \newblock \doi{10.1016/j.apenergy.2010.06.005}. \bibitem[Walln{\"o}fer-Ogris et~al.(2024)Walln{\"o}fer-Ogris, Poimer, K{\"o}ll, Macherhammer, and Trattner]{wallnofer2024main} Eva Walln{\"o}fer-Ogris, Florian Poimer, Rebekka K{\"o}ll, Marie-Gabrielle Macherhammer, and Alexander Trattner. \newblock Main degradation mechanisms of polymer electrolyte membrane fuel cell stacks--mechanisms, influencing factors, consequences, and mitigation strategies. \newblock \emph{International Journal of Hydrogen Energy}, 50:\penalty0 1159--1182, 2024. \bibitem[Takei et~al.(2016)Takei, Kakinuma, Kawashima, Tashiro, Watanabe, and Uchida]{takei2016} C.~Takei, K.~Kakinuma, K.~Kawashima, K.~Tashiro, M.~Watanabe, and M.~Uchida. \newblock Load cycle durability of a graphitized carbon black-supported platinum catalyst in polymer electrolyte fuel cell cathodes. \newblock \emph{Journal of Power Sources}, 324:\penalty0 729--737, 2016. \newblock \doi{10.1016/j.jpowsour.2016.05.117}. \bibitem[Pavli{\v{s}}i{\v{c}} et~al.(2018)Pavli{\v{s}}i{\v{c}}, Jovanovi{\v{c}}, {\v{S}}elih, {\v{S}}ala, Hodnik, and Gaber{\v{s}}{\v{c}}ek]{pavlivsivc2018platinum} Andra{\v{z}} Pavli{\v{s}}i{\v{c}}, Primo{\v{z}} Jovanovi{\v{c}}, Vid~Simon {\v{S}}elih, Martin {\v{S}}ala, Nejc Hodnik, and Miran Gaber{\v{s}}{\v{c}}ek. \newblock Platinum dissolution and redeposition from pt/c fuel cell electrocatalyst at potential cycling. \newblock \emph{Journal of The Electrochemical Society}, 165\penalty0 (6):\penalty0 F3161--F3165, 2018. \bibitem[Okonkwo et~al.(2021{\natexlab{b}})Okonkwo, Ige, Uzoma, Emori, Benamor, Abdullah, et~al.]{okonkwo2021platinum} Paul~C Okonkwo, Oladeji~O Ige, Paul~C Uzoma, Wilfred Emori, Abdelbaki Benamor, Aboubakr~M Abdullah, et~al. \newblock Platinum degradation mechanisms in proton exchange membrane fuel cell (pemfc) system: A review. \newblock \emph{International journal of hydrogen energy}, 46\penalty0 (29):\penalty0 15850--15865, 2021{\natexlab{b}}. \bibitem[Park et~al.(2016)Park, Tokiwa, Kakinuma, Watanabe, and Uchida]{park2016effects} Young-Chul Park, Haruki Tokiwa, Katsuyoshi Kakinuma, Masahiro Watanabe, and Makoto Uchida. \newblock Effects of carbon supports on pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells. \newblock \emph{Journal of Power Sources}, 315:\penalty0 179--191, 2016. \bibitem[Zhao et~al.(2021)Zhao, Tu, and Chan]{zhao2021carbon} Junjie Zhao, Zhengkai Tu, and Siew~Hwa Chan. \newblock Carbon corrosion mechanism and mitigation strategies in a proton exchange membrane fuel cell (pemfc): A review. \newblock \emph{Journal of Power Sources}, 488:\penalty0 229434, 2021. \bibitem[Lin et~al.(2015)Lin, Cui, Shan, T{\'e}cher, Xiong, and Zhang]{lin2015investigating} R~Lin, X~Cui, J~Shan, L~T{\'e}cher, F~Xiong, and Q~Zhang. \newblock Investigating the effect of start-up and shut-down cycles on the performance of the proton exchange membrane fuel cell by segmented cell technology. \newblock \emph{International Journal of Hydrogen Energy}, 40\penalty0 (43):\penalty0 14952--14962, 2015. \bibitem[Ohma et~al.(2008)Ohma, Yamamoto, and Shinohara]{ohma2008} A.~Ohma, S.~Yamamoto, and K.~Shinohara. \newblock Membrane degradation mechanism during open-circuit voltage hold test. \newblock \emph{Journal of Power Sources}, 182\penalty0 (1):\penalty0 39--47, 2008. \newblock \doi{10.1016/j.jpowsour.2008.03.031}. \bibitem[Matsutani et~al.(2010)Matsutani, Hayakawa, and Tada]{matsutani2010} K.~Matsutani, K.~Hayakawa, and T.~Tada. \newblock Effect of particle size of platinum and platinum-cobalt catalysts on stability against load cycling. \newblock \emph{Platinum Metals Review}, 54:\penalty0 223--232, 2010. \bibitem[Ren et~al.(2022)Ren, Pei, Chen, Zhang, Li, Song, Wang, and Wang]{Corr_ren2022corrosion} Peng Ren, Pucheng Pei, Dongfang Chen, Lu~Zhang, Yuehua Li, Xin Song, Mingkai Wang, and He~Wang. \newblock Corrosion of metallic bipolar plates accelerated by operating conditions in a simulated pem fuel cell cathode environment. \newblock \emph{Renewable Energy}, 194:\penalty0 1277--1287, 2022. \bibitem[Kumagai et~al.(2012)Kumagai, Myung, Ichikawa, Yashiro, and Katada]{Corr_kumagai2012high} Masanobu Kumagai, Seung-Taek Myung, Takuma Ichikawa, Hitoshi Yashiro, and Yasuyuki Katada. \newblock High voltage retainable ni-saving high nitrogen stainless steel bipolar plates for proton exchange membrane fuel cells: Phenomena and mechanism. \newblock \emph{Journal of Power Sources}, 202:\penalty0 92--99, 2012. \bibitem[Mele and Bozzini(2010)]{Corr_mele2010localised} Claudio Mele and Benedetto Bozzini. \newblock Localised corrosion processes of austenitic stainless steel bipolar plates for polymer electrolyte membrane fuel cells. \newblock \emph{Journal of Power Sources}, 195\penalty0 (11):\penalty0 3590--3596, 2010. \end{thebibliography}