Standard setup for writing C inspired by Casey Muratori, Ryan Fleury, Mr. 4th Programmer, and others in the handmade community.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

432 line
12 KiB

  1. #include "os.c"
  2. #include "math.h"
  3. #include "string.h" // memmove
  4. #include "core.h"
  5. #define STB_SPRINTF_IMPLEMENTATION
  6. #include "vendor/stb_sprintf.h"
  7. void *pushSizeFill(Arena *arena, size_t bytes, byte fill) {
  8. if (arena->capacity - arena->head >= bytes) {
  9. void *ptr = (char *)arena->memory + arena->head;
  10. arena->head += bytes;
  11. memset(ptr, fill, bytes);
  12. return ptr;
  13. }
  14. return 0;
  15. }
  16. void *pushSize(Arena *arena, size_t bytes) {
  17. if (arena->capacity - arena->head >= bytes) {
  18. void *ptr = (char *)arena->memory + arena->head;
  19. arena->head += bytes;
  20. return ptr;
  21. }
  22. return 0;
  23. }
  24. Arena *arenaAlloc(size_t capacity) {
  25. Arena *result = (Arena *)os_alloc(sizeof(Arena) + capacity);
  26. result->memory = result + sizeof(Arena);
  27. result->capacity = capacity;
  28. result->head = 0;
  29. return result;
  30. }
  31. void arenaFree(Arena *arena) {
  32. os_free(arena, arena->capacity);
  33. }
  34. void arenaFreeFrom(Arena *arena, size_t position) {
  35. arena->head = position;
  36. }
  37. void arenaPopTo(Arena *arena, void *position) {
  38. arena->head = (byte *)position - (byte *)arena->memory;
  39. }
  40. Arena *scratchArenas[2];
  41. void initialiseDjStdCore() {
  42. for (EachInArray(scratchArenas, i)) {
  43. scratchArenas[i] = arenaAlloc(Megabytes(64));
  44. }
  45. }
  46. Scratch scratchStart(Arena **conflicts, size_t conflictCount) {
  47. Scratch scratch = {0};
  48. for (size_t i = 0; i < ArrayCount(scratchArenas); i += 1) {
  49. bool conflicted = false;
  50. for (Arena **conflict = conflicts; conflict < conflicts + conflictCount; conflict += 1) {
  51. if (*conflict == scratchArenas[i]) {
  52. conflicted = true;
  53. break;
  54. }
  55. }
  56. if (conflicted == false) {
  57. scratch.arena = scratchArenas[i];
  58. scratch.start = scratch.arena->head;
  59. break;
  60. }
  61. }
  62. return scratch;
  63. }
  64. #define DeferLoop(begin_stmnt, end_stmnt) for(int __defer_i = ((begin_stmnt), 0); __defer_i < 1; (++__defer_i, (end_stmnt)))
  65. #define WithScratch(scratchName) Scratch scratchName; DeferLoop(scratchName = scratchStart(0, 0), scratchEnd(scratchName))
  66. void scratchEnd(Scratch scratch) {
  67. arenaFreeFrom(scratch.arena, scratch.start);
  68. }
  69. const char *cstring(Arena *arena, string str) {
  70. char *arr = PushArray(arena, char, str.length + 1);
  71. memmove(arr, str.str, str.length);
  72. arr[str.length] = '\0';
  73. return arr;
  74. }
  75. const char *cstringFromCharList(Arena *arena, CharList buf) {
  76. char *arr = PushArray(arena, char, buf.length + 1);
  77. memmove(arr, buf.data, buf.length);
  78. arr[buf.length] = '\0';
  79. return arr;
  80. }
  81. bool strStartsWith(string str, string testStr) {
  82. if (str.length < testStr.length) {
  83. return false;
  84. }
  85. for (size_t i = 0; i < testStr.length; i++) {
  86. if (str.str[i] != testStr.str[i]) {
  87. return false;
  88. }
  89. }
  90. return true;
  91. }
  92. bool strEql(string s1, string s2) {
  93. if (s1.length != s2.length) {
  94. return false;
  95. }
  96. for (size_t i = 0; i < s1.length; i++) {
  97. if (s1.str[i] != s2.str[i]) {
  98. return false;
  99. }
  100. }
  101. return true;
  102. }
  103. size_t calcStringLen(const char *str) {
  104. size_t size = 0;
  105. if (str == NULL) {
  106. return size;
  107. }
  108. while (str[size] != '\0') {
  109. size++;
  110. }
  111. return size;
  112. }
  113. string strFromCString(Arena *arena, const char *str) {
  114. string result = PushString(arena, calcStringLen(str));
  115. memcpy(result.str, str, result.length);
  116. return result;
  117. }
  118. string strReverse(Arena *arena, string str) {
  119. string reversed = PushString(arena, str.length);
  120. for (
  121. size_t mainIndex = str.length - 1, reversedIndex = 0;
  122. mainIndex < str.length;
  123. mainIndex--, reversedIndex++
  124. ) {
  125. reversed.str[reversedIndex] = str.str[mainIndex];
  126. }
  127. return reversed;
  128. }
  129. string strPrintfv(Arena *arena, const char *fmt, va_list args) {
  130. string result = {0};
  131. va_list argsCopy;
  132. va_copy(argsCopy, args);
  133. uint64 bufSize = stb_vsnprintf(0, 0, fmt, args) + 1;
  134. result.str = PushArray(arena, char, bufSize);
  135. result.length = bufSize - 1;
  136. stb_vsnprintf((char *)result.str, (int)bufSize, fmt, argsCopy);
  137. return result;
  138. }
  139. string strPrintf(Arena *arena, const char *fmt, ...) {
  140. string result = {0};
  141. va_list args;
  142. va_start(args, fmt);
  143. result = strPrintfv(arena, fmt, args);
  144. va_end(args);
  145. return result;
  146. }
  147. #define ListSlice(__ls_list__, __ls_start__, __ls_stop__) (__ls_stop__ > l.head || __ls_start__ > __ls_stop__ ? {0} : { l.data + start, stop - start, stop - start, })
  148. string strSlice(string str, size_t start, size_t stop) {
  149. if (stop == 0) {
  150. stop = str.length;
  151. }
  152. // TODO(djledda): maybe assert instead
  153. if (stop > str.length || start > stop) {
  154. return (string){0};
  155. }
  156. return (string){
  157. str.str + start,
  158. stop - start,
  159. };
  160. }
  161. string strSliceCStr(char *data, size_t start, size_t stop) {
  162. return (string){
  163. data + start,
  164. stop - start,
  165. };
  166. }
  167. bool stringContains(string str, char c) {
  168. for (size_t i = 0; i < str.length; i++) {
  169. if (str.str[i] == c) {
  170. return true;
  171. }
  172. }
  173. return false;
  174. }
  175. string NUMERIC_CHARS = s("0123456789");
  176. inline bool isNumeric(char c) {
  177. return stringContains(NUMERIC_CHARS, c);
  178. }
  179. StringList strSplit(Arena *arena, string splitStr, string inputStr) {
  180. StringList result = {0};
  181. if (inputStr.length > 0) {
  182. size_t splitCount = 0;
  183. size_t c = 0;
  184. size_t start = 0;
  185. void *beginning = (char *)arena->memory + arena->head;
  186. while (c < inputStr.length - splitStr.length) {
  187. if (strEql(strSlice(inputStr, c, c + splitStr.length), splitStr)) {
  188. string *splitString = PushStruct(arena, string);
  189. splitString->str = inputStr.str + start;
  190. splitString->length = c - start;
  191. splitCount++;
  192. start = c + 1;
  193. }
  194. c++;
  195. }
  196. string *splitString = PushStruct(arena, string);
  197. splitString->str = inputStr.str + start;
  198. splitString->length = inputStr.length - start;
  199. splitCount++;
  200. result.data = (string *)beginning,
  201. result.head = splitCount,
  202. result.length = splitCount;
  203. }
  204. return result;
  205. }
  206. ParsePositiveIntResult parsePositiveInt(string str, size_t *lengthPointer) {
  207. size_t numEnd = 0;
  208. char currChar = str.str[numEnd];
  209. while (numEnd < str.length && isNumeric(currChar)) {
  210. currChar = str.str[++numEnd];
  211. *lengthPointer += 1;
  212. }
  213. *lengthPointer -= 1;
  214. if (numEnd > 0) {
  215. uint8 result = 0;
  216. for (size_t i = 0; i < numEnd; i++) {
  217. result *= 10;
  218. result += str.str[i] - '0';
  219. }
  220. return (ParsePositiveIntResult){ result, true };
  221. } else {
  222. return (ParsePositiveIntResult){0, false};
  223. }
  224. }
  225. ParsePositiveReal32Result parsePositiveReal32(string str, size_t *lengthPointer) {
  226. ParsePositiveReal32Result result = {NAN, false};
  227. string wholePartStr = (string){0};
  228. string fractionalPartStr = (string){0};
  229. bool split = false;
  230. size_t c = 0;
  231. while (c < str.length) {
  232. if (str.str[c] == '.') {
  233. wholePartStr.str = str.str;
  234. wholePartStr.length = c;
  235. fractionalPartStr.str = str.str + c + 1;
  236. fractionalPartStr.length = str.length - c - 1;
  237. split = true;
  238. break;
  239. }
  240. c++;
  241. }
  242. if (split) {
  243. ParsePositiveIntResult wholePartParsed = parsePositiveInt(wholePartStr, lengthPointer);
  244. *lengthPointer += 1;
  245. ParsePositiveIntResult fractionalPartParsed = parsePositiveInt(fractionalPartStr, lengthPointer);
  246. if (wholePartParsed.valid && fractionalPartParsed.valid) {
  247. // TODO(dledda): implement powf with intrinsics? or just custom
  248. real32 fractionalPartMultiplier = 1.0f / powf(10.0f, (real32)fractionalPartStr.length);
  249. result.result = (real32)wholePartParsed.result + (real32)fractionalPartParsed.result * (real32)fractionalPartMultiplier;
  250. result.valid = true;
  251. }
  252. } else if (c > 0) {
  253. ParsePositiveIntResult intPartParsed = parsePositiveInt(str, lengthPointer);
  254. if (intPartParsed.valid) {
  255. result.result = (real32)intPartParsed.result;
  256. result.valid = true;
  257. }
  258. }
  259. return result;
  260. }
  261. StringList getArgs(Arena *arena, int argc, char **argv) {
  262. StringList args = PushList(arena, StringList, (size_t)argc - 1);
  263. for (int i = 1; i < argc; i++) {
  264. AppendList(string, &args, strFromCString(arena, argv[i]));
  265. }
  266. return args;
  267. }
  268. UnixTimestamp getSystemUnixTime() {
  269. time_t now;
  270. time(&now);
  271. return (UnixTimestamp)now;
  272. }
  273. Timestamp timestampFromUnixTime(UnixTimestamp *unixTimestamp) {
  274. struct tm timestamp = {0};
  275. gmtime_r((time_t *)unixTimestamp, &timestamp);
  276. return timestamp;
  277. }
  278. string formatTimeHmsUnix(Arena *arena, UnixTimestamp time) {
  279. local_persist const string format = s("HH-MM-SS");
  280. string buf = PushString(arena, format.length);
  281. struct tm *timestamp = gmtime((time_t *)&time);
  282. strftime(buf.str, buf.length + 1, "%T", timestamp);
  283. return buf;
  284. }
  285. string formatTimeHms(Arena *arena, Timestamp *time) {
  286. local_persist const string format = s("HH-MM-SS");
  287. string buf = PushString(arena, format.length);
  288. strftime(buf.str, buf.length + 1, "%T", (struct tm *)time);
  289. return buf;
  290. }
  291. string formatTimeYmdUnix(Arena *arena, UnixTimestamp time) {
  292. local_persist const string format = s("YYYY-mm-dd");
  293. string buf = PushString(arena, format.length);
  294. struct tm *timestamp = gmtime((time_t *)&time);
  295. strftime(buf.str, buf.length + 1, "%Y-%m-%d", timestamp);
  296. return buf;
  297. }
  298. string formatTimeYmd(Arena *arena, Timestamp *time) {
  299. local_persist const string format = s("YYYY-mm-dd");
  300. string buf = PushString(arena, format.length);
  301. strftime(buf.str, buf.length + 1, "%Y-%m-%d", (struct tm *)time);
  302. return buf;
  303. }
  304. void printStderr(const char *fmt, ...) {
  305. va_list argList;
  306. va_start(argList, fmt);
  307. os_print(StdStream_stdout, fmt, argList);
  308. va_end(argList);
  309. }
  310. function void printStdout(const char *fmt, ...) {
  311. va_list argList;
  312. va_start(argList, fmt);
  313. os_print(StdStream_stdout, fmt, argList);
  314. va_end(argList);
  315. }
  316. void print(const char *fmt, ...) {
  317. va_list argList;
  318. va_start(argList, fmt);
  319. os_print(StdStream_stdout, fmt, argList);
  320. va_end(argList);
  321. }
  322. // TODO(dledda): mat print functions
  323. /*
  324. void print(list<Vector4<real32>> l, StdStream target) {
  325. void (*logFn)(const char *fmt, ...) = target == StdStream_stdout ? &printStdout : &printStderr;
  326. logFn("{ ");
  327. for (size_t i = 0; i < l.length; i++) {
  328. if (i != 0) {
  329. logFn(", ");
  330. }
  331. logFn("{ %.2f, %.2f, %.2f, %.2f }", l.data[i].x, l.data[i].y, l.data[i].z, l.data[i].w);
  332. }
  333. logFn(" } length: %zu, head: %zu\n", l.length, l.head);
  334. }
  335. void print(list<Vector3<real32>> l, StdStream target) {
  336. void (*logFn)(const char *fmt, ...) = target == StdStream_stdout ? &printStdout : &printStderr;
  337. logFn("{ ");
  338. for (size_t i = 0; i < l.length; i++) {
  339. if (i != 0) {
  340. logFn(", ");
  341. }
  342. logFn("{ %.2f, %.2f, %.2f }", l.data[i].x, l.data[i].y, l.data[i].z);
  343. }
  344. logFn(" } length: %zu, head: %zu\n", l.length, l.head);
  345. }
  346. void print(list<Vector2<real32>> l, StdStream target) {
  347. void (*logFn)(const char *fmt, ...) = target == StdStream_stdout ? &printStdout : &printStderr;
  348. logFn("{ ");
  349. for (size_t i = 0; i < l.length; i++) {
  350. if (i != 0) {
  351. logFn(", ");
  352. }
  353. logFn("{ %.2f, %.2f }", l.data[i].x, l.data[i].y);
  354. }
  355. logFn(" } length: %zu, head: %zu\n", l.length, l.head);
  356. }
  357. */
  358. void (*__djstdlib_logFn)(const char *fmt, ...) = &printStdout;
  359. void printIntList(IntList l) {
  360. __djstdlib_logFn("{ ");
  361. for (size_t i = 0; i < l.length; i++) {
  362. if (i != 0) {
  363. __djstdlib_logFn(", ");
  364. }
  365. __djstdlib_logFn("%i", l.data[i]);
  366. }
  367. __djstdlib_logFn(" } length: %zu, head: %zu\n", l.length, l.head);
  368. }
  369. void printStringList(StringList l) {
  370. __djstdlib_logFn("{ ");
  371. for (size_t i = 0; i < l.length; i++) {
  372. if (i != 0) {
  373. __djstdlib_logFn(", ");
  374. }
  375. __djstdlib_logFn("\"%S\"", l.data[i]);
  376. }
  377. __djstdlib_logFn(" } length: %zu, head: %zu\n", l.length, l.head);
  378. }
  379. int intCompare(const void *a, const void *b) {
  380. int *x = (int *)a;
  381. int *y = (int *)b;
  382. return (*x > *y) - (*x < *y);
  383. }