Non puoi selezionare più di 25 argomenti Gli argomenti devono iniziare con una lettera o un numero, possono includere trattini ('-') e possono essere lunghi fino a 35 caratteri.

677 righe
31 KiB

  1. \begin{thebibliography}{86}
  2. \providecommand{\natexlab}[1]{#1}
  3. \providecommand{\url}[1]{\texttt{#1}}
  4. \expandafter\ifx\csname urlstyle\endcsname\relax
  5. \providecommand{\doi}[1]{doi: #1}\else
  6. \providecommand{\doi}{doi: \begingroup \urlstyle{rm}\Url}\fi
  7. \bibitem[{Intergovernmental Panel on Climate Change
  8. (IPCC)}(2018)]{01_ipcc_sr15_2018}
  9. {Intergovernmental Panel on Climate Change (IPCC)}.
  10. \newblock Global warming of 1.5°c: An ipcc special report, 2018.
  11. \newblock URL \url{https://www.ipcc.ch/sr15/}.
  12. \newblock Accessed: 2024-08-27.
  13. \bibitem[Xu and Ramanathan(2017)]{01_xu_ramanathan_2017}
  14. Yangyang Xu and Veerabhadran Ramanathan.
  15. \newblock Well below 2$\degree$ c : Mitigation strategies for avoiding
  16. dangerous to catastrophic climate changes.
  17. \newblock \emph{Proceedings of the National Academy of Sciences}, 114\penalty0
  18. (39), 2017.
  19. \newblock ISSN 0027-8424, 1091-6490.
  20. \newblock URL \url{https://pnas.org/doi/full/10.1073/pnas.1618481114}.
  21. \newblock pages 10315--10323.
  22. \bibitem[of~Germany(2024)]{01_E_klimaschutzgesetz}
  23. Federal~Government of~Germany.
  24. \newblock Ein plan fürs klima, 2024.
  25. \newblock URL
  26. \url{https://www.bundesregierung.de/breg-de/themen/tipps-fuer-verbraucher/klimaschutzgesetz-2197410}.
  27. \newblock Accessed: 2024-08-26.
  28. \bibitem[Umweltbundesamt(2024{\natexlab{a}})]{01_umweltbundesamt_treibhausgas_eu}
  29. Umweltbundesamt.
  30. \newblock Treibhausgas-emissionen in der europäischen union: Trends,
  31. 2024{\natexlab{a}}.
  32. \newblock URL
  33. \url{https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-in-der-europaeischen-union#trends}.
  34. \newblock Accessed: 2024-08-27.
  35. \bibitem[on~Climate Change~(IPCC)(2021)]{01_ipcc_ar6_wg1_2021}
  36. Intergovernmental~Panel on~Climate Change~(IPCC).
  37. \newblock Ipcc ar6 working group i summary for policymakers, 2021.
  38. \newblock URL
  39. \url{https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf}.
  40. \newblock pages 6-7, Accessed: 2024-08-27.
  41. \bibitem[Umweltbundesamt(2024{\natexlab{b}})]{01_umweltbundesamt_verkehr_emissionen}
  42. Umweltbundesamt.
  43. \newblock Emissionen des verkehrs: Verkehr belastet luft und klima -
  44. minderungsziele der bundesregierung, 2024{\natexlab{b}}.
  45. \newblock URL
  46. \url{https://www.umweltbundesamt.de/daten/verkehr/emissionen-des-verkehrs#verkehr-belastet-luft-und-klima-minderungsziele-der-bundesregierung}.
  47. \newblock Accessed: 2024-08-27.
  48. \bibitem[(Destatis)(2024)]{01_destatis_co2_strassenverkehr}
  49. Statistisches~Bundesamt (Destatis).
  50. \newblock Co2-emissionen im straßenverkehr in europa, 2024.
  51. \newblock URL
  52. \url{https://www.destatis.de/Europa/DE/Thema/Umwelt-Energie/CO2_Strassenverkehr.html}.
  53. \newblock Accessed: 2024-08-27.
  54. \bibitem[Nations(2023)]{01_un_climatechange_causes_2023}
  55. United Nations.
  56. \newblock Causes and effects of climate change, 2023.
  57. \newblock URL
  58. \url{https://www.un.org/en/climatechange/science/causes-effects-climate-change}.
  59. \newblock Accessed: 2024-08-27.
  60. \bibitem[Wilberforce et~al.(2016)Wilberforce, Alaswad, Palumbo, Dassisti, and
  61. Olabi]{01_wilberforce_advances_2016}
  62. Tabbi Wilberforce, A.~Alaswad, A.~Palumbo, M.~Dassisti, and A.G. Olabi.
  63. \newblock Advances in stationary and portable fuel cell applications.
  64. \newblock \emph{International Journal of Hydrogen Energy}, 41\penalty0
  65. (37):\penalty0 16509--16522, October 2016.
  66. \newblock ISSN 03603199.
  67. \newblock \doi{10.1016/j.ijhydene.2016.02.057}.
  68. \newblock URL
  69. \url{https://linkinghub.elsevier.com/retrieve/pii/S0360319915315822}.
  70. \bibitem[Wilberforce et~al.(2017)Wilberforce, El-Hassan, Khatib, Al~Makky,
  71. Baroutaji, Carton, and Olabi]{01_wilberforce_developments_2017}
  72. Tabbi Wilberforce, Zaki El-Hassan, F.N. Khatib, Ahmed Al~Makky, Ahmad
  73. Baroutaji, James~G. Carton, and Abdul~G. Olabi.
  74. \newblock Developments of electric cars and fuel cell hydrogen electric cars.
  75. \newblock \emph{International Journal of Hydrogen Energy}, 42\penalty0
  76. (40):\penalty0 25695--25734, October 2017.
  77. \newblock ISSN 03603199.
  78. \newblock \doi{10.1016/j.ijhydene.2017.07.054}.
  79. \newblock URL
  80. \url{https://linkinghub.elsevier.com/retrieve/pii/S036031991732791X}.
  81. \bibitem[Wang et~al.(2018)Wang, Zhang, Lu, Wang, and Li]{wang_preparation_2018}
  82. Yanli Wang, Shenghua Zhang, Zhaoxia Lu, Lisheng Wang, and Weihua Li.
  83. \newblock Preparation and performances of electrically conductive {Nb}-doped
  84. {TiO2} coatings for 316 stainless steel bipolar plates of proton-exchange
  85. membrane fuel cells.
  86. \newblock \emph{Corrosion Science}, 142:\penalty0 249--257, September 2018.
  87. \newblock ISSN 0010938X.
  88. \newblock \doi{10.1016/j.corsci.2018.07.034}.
  89. \newblock URL
  90. \url{https://linkinghub.elsevier.com/retrieve/pii/S0010938X17317900}.
  91. \bibitem[Elferjani et~al.(2021)Elferjani, Serre, Ter-Ovanessian, and
  92. Normand]{elferjani_coupling_2021}
  93. I.~Elferjani, G.~Serre, B.~Ter-Ovanessian, and B.~Normand.
  94. \newblock A coupling approach between metallic bipolar plates corrosion and
  95. membrane chemical degradation in the proton exchange membrane fuel cells.
  96. \newblock \emph{International Journal of Hydrogen Energy}, 46\penalty0
  97. (63):\penalty0 32226--32241, September 2021.
  98. \newblock ISSN 03603199.
  99. \newblock \doi{10.1016/j.ijhydene.2021.06.215}.
  100. \newblock URL
  101. \url{https://linkinghub.elsevier.com/retrieve/pii/S0360319921025039}.
  102. \bibitem[Baroutaji et~al.(2015{\natexlab{a}})Baroutaji, Carton, Sajjia, and
  103. Olabi]{02_baroutaji2015materials}
  104. Ahmad Baroutaji, JG~Carton, Mustafa Sajjia, and Abdul~Ghani Olabi.
  105. \newblock Materials in pem fuel cells.
  106. \newblock 2015{\natexlab{a}}.
  107. \bibitem[Lucia(2014)]{02_lucia2014overview}
  108. Umberto Lucia.
  109. \newblock Overview on fuel cells.
  110. \newblock \emph{Renewable and Sustainable Energy Reviews}, 30:\penalty0
  111. 164--169, 2014.
  112. \newblock pages 164-169.
  113. \bibitem[Wang et~al.(2020)Wang, Seo, Wang, Zamel, Jiao, and
  114. Adroher]{02_wang2020fundamentals}
  115. Yun Wang, Bongjin Seo, Bowen Wang, Nada Zamel, Kui Jiao, and Xavier~Cordobes
  116. Adroher.
  117. \newblock Fundamentals, materials, and machine learning of polymer electrolyte
  118. membrane fuel cell technology.
  119. \newblock \emph{Energy and AI}, 1:\penalty0 100014, 2020.
  120. \newblock page 100014.
  121. \bibitem[Abderezzak(2018)]{02_Abderezzak2018}
  122. B.~Abderezzak.
  123. \newblock \emph{Introduction to Transfer Phenomena in PEM Fuel Cells}.
  124. \newblock Elsevier, 1st edition, 2018.
  125. \newblock page = 16.
  126. \bibitem[Hauser(2021)]{SOFC_hauser2021effects}
  127. Michael~Maximilian Hauser.
  128. \newblock \emph{Effects of Tars on Solid Oxide Fuel Cells}.
  129. \newblock PhD thesis, Technische Universit{\"a}t M{\"u}nchen, 2021.
  130. \bibitem[Lin et~al.(2024)Lin, Kerscher, Herrmann, Steinrücken, and
  131. Spliethoff]{SOFC_lin_analysis_2024}
  132. Chen Lin, Florian Kerscher, Stephan Herrmann, Benjamin Steinrücken, and
  133. Hartmut Spliethoff.
  134. \newblock Analysis on temperature uniformity in methane-rich internal reforming
  135. solid oxide fuel cells ({SOFCs}).
  136. \newblock \emph{International Journal of Hydrogen Energy}, 57, February 2024.
  137. \newblock ISSN 03603199.
  138. \newblock \doi{10.1016/j.ijhydene.2024.01.071}.
  139. \newblock URL
  140. \url{https://linkinghub.elsevier.com/retrieve/pii/S0360319924000831}.
  141. \newblock pages 769--788.
  142. \bibitem[Haberman and Young(2004)]{SOFC_Haberman2004}
  143. B.~A. Haberman and J.~B. Young.
  144. \newblock Three-dimensional simulation of chemically reacting gas flows in the
  145. porous support structure of an integrated-planar solid oxide fuel cell.
  146. \newblock \emph{International Journal of Heat and Mass Transfer}, 47\penalty0
  147. (17):\penalty0 3617--3629, 2004.
  148. \newblock \doi{10.1016/j.ijheatmasstransfer.2004.03.009}.
  149. \bibitem[Buttler and Spliethoff(2016)]{SOFC_WGS_Buttler2016}
  150. A.~Buttler and H.~Spliethoff.
  151. \newblock Kampf der studien.
  152. \newblock Technical report, Lehrstuhl für Energiesysteme, 2016.
  153. \bibitem[Contreras et~al.(2021)Contreras, Almarza, and
  154. Rinc{\'o}n]{MCFScontreras2021molten}
  155. Ricardo~R Contreras, Jorge Almarza, and Luis Rinc{\'o}n.
  156. \newblock Molten carbonate fuel cells: a technological perspective and review.
  157. \newblock \emph{Energy Sources, Part A: Recovery, Utilization, and
  158. Environmental Effects}, pages 1--15, 2021.
  159. \bibitem[Cui et~al.(2021)Cui, Li, Gong, Wei, Hou, Jiang, Yao, and
  160. Ma]{MCFS_cui2021review}
  161. Can Cui, Shuangbin Li, Junyi Gong, Keyan Wei, Xiangjun Hou, Cairong Jiang, Yali
  162. Yao, and Jianjun Ma.
  163. \newblock Review of molten carbonate-based direct carbon fuel cells.
  164. \newblock \emph{Materials for Renewable and Sustainable Energy}, 10:\penalty0
  165. 1--24, 2021.
  166. \bibitem[McLean et~al.(2002)McLean, Niet, Prince-Richard, and
  167. Djilali]{AFC_mclean2002assessment}
  168. GF~McLean, T~Niet, S~Prince-Richard, and N~Djilali.
  169. \newblock An assessment of alkaline fuel cell technology.
  170. \newblock \emph{International Journal of Hydrogen Energy}, 27\penalty0
  171. (5):\penalty0 507--526, 2002.
  172. \newblock page 513.
  173. \bibitem[Al-Saleh et~al.(1994{\natexlab{a}})Al-Saleh, Gultekin, Al-Zakri, and
  174. Celiker]{AFC_AlSaleh1994_CO2}
  175. M.A. Al-Saleh, S.~Gultekin, A.S. Al-Zakri, and H.~Celiker.
  176. \newblock Effect of carbon dioxide on the performance of ni=ptfe and ag=ptfe
  177. electrodes in an alkaline fuel cell.
  178. \newblock \emph{Journal of Applied Electrochemistry}, 24:\penalty0 575--580,
  179. 1994{\natexlab{a}}.
  180. \bibitem[Al-Saleh et~al.(1994{\natexlab{b}})Al-Saleh, Gultekin, Al-Zakri, and
  181. Celiker]{AFC_AlSaleh1994_Ni}
  182. M.A. Al-Saleh, S.~Gultekin, A.S. Al-Zakri, and H.~Celiker.
  183. \newblock Performance of porous nickel electrode for alkaline h2=o2 fuel cell.
  184. \newblock \emph{International Journal of Hydrogen Energy}, 19:\penalty0
  185. 713--718, 1994{\natexlab{b}}.
  186. \bibitem[Arrigoni et~al.(2022)Arrigoni, Arosio, Basso~Peressut, Latorrata, and
  187. Dotelli]{PEM_Atuomotive_arrigoni2022greenhouse}
  188. Alessandro Arrigoni, Valeria Arosio, Andrea Basso~Peressut, Saverio Latorrata,
  189. and Giovanni Dotelli.
  190. \newblock Greenhouse gas implications of extending the service life of pem fuel
  191. cells for automotive applications: A life cycle assessment.
  192. \newblock \emph{Clean Technologies}, 4\penalty0 (1):\penalty0 132--148, 2022.
  193. \bibitem[O'hayre et~al.(2016)O'hayre, Cha, Colella, and
  194. Prinz]{Fundamentals_o2016fuel}
  195. Ryan O'hayre, Suk-Won Cha, Whitney Colella, and Fritz~B Prinz.
  196. \newblock \emph{Fuel cell fundamentals}.
  197. \newblock John Wiley \& Sons, 2016.
  198. \bibitem[Scherer(2012)]{Fundamentals_scherer2012fuel}
  199. Günther~G Scherer.
  200. \newblock Fuel cell types and their electrochemistry.
  201. \newblock In \emph{Fuel Cells: Selected Entries from the Encyclopedia of
  202. Sustainability Science and Technology}, pages 97--119. Springer, 2012.
  203. \bibitem[Barbir(2008)]{Fund_barbir2008fuel}
  204. Frano Barbir.
  205. \newblock Fuel cell basic chemistry, electrochemistry and thermodynamics.
  206. \newblock In \emph{Mini-Micro Fuel Cells: Fundamentals and Applications}, pages
  207. 13--26. Springer, 2008.
  208. \bibitem[Omran et~al.(2021)Omran, Lucchesi, Smith, Alaswad, Amiri, Wilberforce,
  209. Sodr{\'e}, and Olabi]{F_omran2021mathematical}
  210. Abdelnasir Omran, Alessandro Lucchesi, David Smith, Abed Alaswad, Amirpiran
  211. Amiri, Tabbi Wilberforce, Jos{\'e}~Ricardo Sodr{\'e}, and AG~Olabi.
  212. \newblock Mathematical model of a proton-exchange membrane (pem) fuel cell.
  213. \newblock \emph{International Journal of Thermofluids}, 11:\penalty0 100110,
  214. 2021.
  215. \bibitem[Sahu et~al.(2014)Sahu, Krishna, Biswas, and
  216. Das]{Nernst_sahu2014performance}
  217. Ishwar~Prasad Sahu, Gali Krishna, Manojit Biswas, and Mihir~Kumar Das.
  218. \newblock Performance study of pem fuel cell under different loading
  219. conditions.
  220. \newblock \emph{Energy Procedia}, 54:\penalty0 468--478, 2014.
  221. \bibitem[Mardle et~al.(2021{\natexlab{a}})Mardle, Cerri, Suzuki, and
  222. El-Kharouf]{Nernst_mardle2021examination}
  223. Peter Mardle, Isotta Cerri, Toshiyuki Suzuki, and Ahmad El-Kharouf.
  224. \newblock An examination of the catalyst layer contribution to the disparity
  225. between the nernst potential and open circuit potential in proton exchange
  226. membrane fuel cells.
  227. \newblock \emph{Catalysts}, 11\penalty0 (8):\penalty0 965, 2021{\natexlab{a}}.
  228. \bibitem[Xu et~al.(2020)Xu, Qiu, Yi, Peng, and Lai]{PEMSchem_xu2020towards}
  229. Zhutian Xu, Diankai Qiu, Peiyun Yi, Linfa Peng, and Xinmin Lai.
  230. \newblock Towards mass applications: A review on the challenges and
  231. developments in metallic bipolar plates for pemfc.
  232. \newblock \emph{Progress in natural science: materials international},
  233. 30\penalty0 (6):\penalty0 815--824, 2020.
  234. \bibitem[Baroutaji et~al.(2015{\natexlab{b}})Baroutaji, Carton, Sajjia, and
  235. Olabi]{PEM_baroutaji2015materials}
  236. Ahmad Baroutaji, JG~Carton, Mustafa Sajjia, and Abdul~Ghani Olabi.
  237. \newblock Materials in pem fuel cells.
  238. \newblock pages 4--11, 2015{\natexlab{b}}.
  239. \bibitem[{U.S. Department of Energy}(2024)]{doe_pemfc_targets}
  240. {U.S. Department of Energy}.
  241. \newblock Doe technical targets for polymer electrolyte membrane fuel cell
  242. components, 2024.
  243. \newblock URL
  244. \url{https://www.energy.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components}.
  245. \newblock Accessed: 2024-09-16.
  246. \bibitem[Antunes et~al.(2010)Antunes, Oliveira, Ett, and Ett]{antunes2010}
  247. R.A. Antunes, M.C.L. Oliveira, G.~Ett, and V.~Ett.
  248. \newblock Corrosion of metal bipolar plates for pem fuel cells: A review.
  249. \newblock \emph{International Journal of Hydrogen Energy}, 35\penalty0
  250. (8):\penalty0 3632--3647, 2010.
  251. \newblock \doi{10.1016/j.ijhydene.2010.01.059}.
  252. \bibitem[Li and Sabir(2005)]{SSweight_li2005review}
  253. Xianguo Li and Imad Sabir.
  254. \newblock Review of bipolar plates in pem fuel cells: Flow-field designs.
  255. \newblock \emph{International Journal of Hydrogen Energy}, 30\penalty0
  256. (4):\penalty0 359--371, 2005.
  257. \newblock \doi{10.1016/j.ijhydene.2004.09.019}.
  258. \bibitem[Leng et~al.(2020)Leng, Ming, Yang, and Zhang]{Automotive_leng2020}
  259. Y.~Leng, P.~Ming, D.~Yang, and C.~Zhang.
  260. \newblock J. power sources 451 (2020) 227783.
  261. \newblock \emph{Journal of Power Sources}, 451:\penalty0 227783, 2020.
  262. \newblock \doi{10.1016/j.jpowsour.2019.227783}.
  263. \bibitem[{Toyota Motor Corporation}(2021)]{toyota_technical_review_2021}
  264. {Toyota Motor Corporation}.
  265. \newblock Toyota technical review, vol. 66, 2021.
  266. \newblock URL
  267. \url{https://global.toyota/pages/global_toyota/mobility/technology/toyota-technical-review/TTR_Vol66_E.pdf}.
  268. \newblock Accessed: 2024-09-16.
  269. \bibitem[{BMW Group}(2024)]{bmw_hydrogen_2024}
  270. {BMW Group}.
  271. \newblock Hydrogen as a drive technology, 2024.
  272. \newblock URL
  273. \url{https://www.bmwgroup.com/en/innovation/drive-technologies/hydrogen.html}.
  274. \newblock Accessed: 2024-09-16.
  275. \bibitem[Eom et~al.(2012)Eom, Cho, Nam, Lim, Jang, Kim, Hong, and
  276. Yang]{eom2012}
  277. K.~Eom, E.~Cho, S.-W. Nam, T.-H. Lim, J.H. Jang, H.-J. Kim, B.K. Hong, and Y.C.
  278. Yang.
  279. \newblock Degradation behavior of a polymer electrolyte membrane fuel cell
  280. employing metallic bipolar plates under reverse current condition.
  281. \newblock \emph{Electrochimica Acta}, 78:\penalty0 324--330, 2012.
  282. \newblock \doi{10.1016/j.electacta.2012.06.023}.
  283. \bibitem[Sulek et~al.(2011)Sulek, Adams, Kaberline, Ricketts, and
  284. Waldecker]{sulek2011}
  285. M.~Sulek, J.~Adams, S.~Kaberline, M.~Ricketts, and J.R. Waldecker.
  286. \newblock Investigation of stainless steel bipolar plates for pem fuel cells:
  287. Corrosion and contact resistance measurements.
  288. \newblock \emph{Journal of Power Sources}, 196:\penalty0 8967--8972, 2011.
  289. \newblock \doi{10.1016/j.jpowsour.2011.06.048}.
  290. \bibitem[Papadias et~al.(2015)Papadias, Ahluwalia, Thomson, Meyer~III, Brady,
  291. Wang, Turner, Mukundan, and Borup]{papadias2015degradation}
  292. Dionissios~D Papadias, Rajesh~K Ahluwalia, Jeffery~K Thomson, Harry~M
  293. Meyer~III, Michael~P Brady, Heli Wang, John~A Turner, Rangachary Mukundan,
  294. and Rod Borup.
  295. \newblock Degradation of ss316l bipolar plates in simulated fuel cell
  296. environment: Corrosion rate, barrier film formation kinetics and contact
  297. resistance.
  298. \newblock \emph{Journal of Power Sources}, 273:\penalty0 1237--1249, 2015.
  299. \bibitem[Feng et~al.(2011)Feng, Wu, Li, Cai, and Chu]{feng2011}
  300. K.~Feng, G.S. Wu, Z.G. Li, X.~Cai, and P.K. Chu.
  301. \newblock Degradation of polymer electrolyte membrane fuel cells with stainless
  302. steel bipolar plates.
  303. \newblock \emph{International Journal of Hydrogen Energy}, 36:\penalty0
  304. 13032--13042, 2011.
  305. \newblock \doi{10.1016/j.ijhydene.2011.07.113}.
  306. \bibitem[Lim et~al.(2021)Lim, Majlan, Tajuddin, Husaini, Daud, Radzuan, and
  307. Haque]{MEA_lim2021comparison}
  308. Bee~Huah Lim, Edy~Herianto Majlan, Ahmad Tajuddin, Teuku Husaini, Wan Ramli~Wan
  309. Daud, Nabilah Afiqah~Mohd Radzuan, and Md~Ahsanul Haque.
  310. \newblock Comparison of catalyst-coated membranes and catalyst-coated substrate
  311. for pemfc membrane electrode assembly: A review.
  312. \newblock \emph{Chinese Journal of Chemical Engineering}, 33:\penalty0 1--16,
  313. 2021.
  314. \bibitem[Lapicque et~al.(2012)Lapicque, Bonnet, Huang, and
  315. Chatillon]{MEA_lapicque2012}
  316. F.~Lapicque, C.~Bonnet, B.T. Huang, and Y.~Chatillon.
  317. \newblock Analysis and evaluation of aging phenomena in pemfcs.
  318. \newblock In A.C.E. Sundmacher, editor, \emph{Fuel Cell Engineering}, pages
  319. 265--330. Elsevier, Amsterdam, 2012.
  320. \bibitem[Bhosale et~al.(2020)Bhosale, Ghosh, and Assaud]{MEA_bhosale2020}
  321. A.~C. Bhosale, P.~C. Ghosh, and L.~Assaud.
  322. \newblock Preparation methods of membrane electrode assemblies for proton
  323. exchange membrane fuel cells and unitized regenerative fuel cells: A review.
  324. \newblock \emph{Renewable and Sustainable Energy Reviews}, 133:\penalty0
  325. 110286, 2020.
  326. \newblock \doi{10.1016/j.rser.2020.110286}.
  327. \bibitem[Parekh(2022)]{PEM_MEA_parekh2022recent}
  328. Abhi Parekh.
  329. \newblock Recent developments of proton exchange membranes for pemfc: A review.
  330. \newblock \emph{Frontiers in Energy Research}, 10:\penalty0 956132, 2022.
  331. \bibitem[Liew et~al.(2014)Liew, Daud, Ghasemi, Leong, Lim, and
  332. Ismail]{Pt_liew2014}
  333. K.~Ben Liew, W.R.W. Daud, M.~Ghasemi, J.X. Leong, S.~Su Lim, and M.~Ismail.
  334. \newblock Non-pt catalyst as oxygen reduction reaction in microbial fuel cells:
  335. a review.
  336. \newblock \emph{International Journal of Hydrogen Energy}, 39\penalty0
  337. (10):\penalty0 4870--4883, 2014.
  338. \newblock \doi{10.1016/j.ijhydene.2014.01.062}.
  339. \bibitem[Thiele et~al.(2024{\natexlab{a}})Thiele, Yang, Dirkes, Wick, and
  340. Pischinger]{thiele2024realistic}
  341. Paul Thiele, Yue Yang, Steffen Dirkes, Maximilian Wick, and Stefan Pischinger.
  342. \newblock Realistic accelerated stress tests for pem fuel cells: Test procedure
  343. development based on standardized automotive driving cycles.
  344. \newblock \emph{international journal of hydrogen energy}, 52:\penalty0
  345. 1065--1080, 2024{\natexlab{a}}.
  346. \bibitem[Zamel et~al.(2011)Zamel, Litovsky, Shakhshir, et~al.]{GDL_zamel2011}
  347. N.~Zamel, E.~Litovsky, S.~Shakhshir, et~al.
  348. \newblock Measurement of in-plane thermal conductivity of carbon paper
  349. diffusion media in the temperature range of -20 °c to +120 °c.
  350. \newblock \emph{Applied Energy}, 88:\penalty0 3042--3050, 2011.
  351. \newblock \doi{10.1016/j.apenergy.2011.02.008}.
  352. \bibitem[Ijaodola et~al.(2019)Ijaodola, El-Hassan, Ogungbemi, Khatib,
  353. Wilberforce, Thompson, and Olabi]{ijaodola2019}
  354. O.S. Ijaodola, Z.~El-Hassan, E.~Ogungbemi, F.N. Khatib, T.~Wilberforce,
  355. J.~Thompson, and A.G. Olabi.
  356. \newblock A review of polymer electrolyte membrane fuel cell models for
  357. application to automotive systems.
  358. \newblock \emph{Energy}, 179:\penalty0 246--267, 2019.
  359. \newblock \doi{10.1016/j.energy.2019.03.126}.
  360. \bibitem[Majlan et~al.(2018)Majlan, Rohendi, Daud, Husaini, and
  361. Haque]{majlan2018}
  362. E.H. Majlan, D.~Rohendi, W.R.W. Daud, T.~Husaini, and M.A. Haque.
  363. \newblock A review of polymer electrolyte membrane fuel cell (pemfc)
  364. durability: Degradation mechanisms and mitigation strategies.
  365. \newblock \emph{Renewable and Sustainable Energy Reviews}, 89:\penalty0
  366. 117--134, 2018.
  367. \newblock \doi{10.1016/j.rser.2018.03.007}.
  368. \bibitem[Malek et~al.(2011)Malek, Mashio, and Eikerling]{CT_malek2011}
  369. K.~Malek, T.~Mashio, and M.~Eikerling.
  370. \newblock Microstructure of catalyst layers in pem fuel cells redefined: a
  371. computational approach.
  372. \newblock \emph{Electrocatalysis}, 2\penalty0 (2):\penalty0 141--157, 2011.
  373. \newblock \doi{10.1007/s12678-011-0047-0}.
  374. \bibitem[Hnát et~al.(2019)Hnát, Plevova, Tufa, Zitka, Paidar, and
  375. Bouzek]{hnat2019}
  376. J.~Hnát, M.~Plevova, R.A. Tufa, J.~Zitka, M.~Paidar, and K.~Bouzek.
  377. \newblock Development and testing of a novel catalyst-coated membrane with
  378. platinum-free catalysts for alkaline water electrolysis.
  379. \newblock \emph{International Journal of Hydrogen Energy}, 44:\penalty0
  380. 17493--17504, 2019.
  381. \newblock \doi{10.1016/j.ijhydene.2019.05.067}.
  382. \bibitem[Zamel(2016)]{ink_zamel2016catalyst}
  383. Nada Zamel.
  384. \newblock The catalyst layer and its dimensionality--a look into its
  385. ingredients and how to characterize their effects.
  386. \newblock \emph{Journal of Power Sources}, 309:\penalty0 141--159, 2016.
  387. \bibitem[Ghassemzadeh et~al.(2010)Ghassemzadeh, Kreuer, Maier, and
  388. Muller]{ghassemzadeh2010chemical}
  389. Lida Ghassemzadeh, Klaus-Dieter Kreuer, Joachim Maier, and Klaus Muller.
  390. \newblock Chemical degradation of nafion membranes under mimic fuel cell
  391. conditions as investigated by solid-state nmr spectroscopy.
  392. \newblock \emph{The Journal of Physical Chemistry C}, 114\penalty0
  393. (34):\penalty0 14635--14645, 2010.
  394. \bibitem[Okonkwo et~al.(2021{\natexlab{a}})Okonkwo, Belgacem, Emori, and
  395. Uzoma]{okonkwo2021nafion}
  396. Paul~C Okonkwo, Ikram~Ben Belgacem, Wilfred Emori, and Paul~C Uzoma.
  397. \newblock Nafion degradation mechanisms in proton exchange membrane fuel cell
  398. (pemfc) system: A review.
  399. \newblock \emph{International journal of hydrogen energy}, 46\penalty0
  400. (55):\penalty0 27956--27973, 2021{\natexlab{a}}.
  401. \bibitem[Zaidi and Matsuura(2009)]{zaidi2009polymer}
  402. SM~Javaid Zaidi and Takeshi Matsuura.
  403. \newblock \emph{Polymer membranes for fuel cells}.
  404. \newblock Springer, 2009.
  405. \bibitem[Teranishi et~al.(2006)Teranishi, Kawata, Tsushima, and
  406. Hirai]{teranishi2006}
  407. K.~Teranishi, K.~Kawata, S.~Tsushima, and S.~Hirai.
  408. \newblock Degradation mechanism of pemfc under open circuit operation.
  409. \newblock \emph{Electrochemical and Solid-State Letters}, 9\penalty0
  410. (10):\penalty0 475--477, 2006.
  411. \newblock \doi{10.1149/1.2227524}.
  412. \bibitem[Ren et~al.(2020)Ren, Pei, Li, Wu, Chen, and Huang]{ren2020degradation}
  413. Peng Ren, Pucheng Pei, Yuehua Li, Ziyao Wu, Dongfang Chen, and Shangwei Huang.
  414. \newblock Degradation mechanisms of proton exchange membrane fuel cell under
  415. typical automotive operating conditions.
  416. \newblock \emph{Progress in Energy and Combustion Science}, 80:\penalty0
  417. 100859, 2020.
  418. \bibitem[Trabia et~al.(2016)Trabia, Hwang, and Kim]{trabia2016}
  419. S.~Trabia, T.~Hwang, and K.J. Kim.
  420. \newblock A fabrication method of unique nafion shapes by painting for ionic
  421. polymer-metal composites.
  422. \newblock \emph{Smart Materials and Structures}, 25:\penalty0 085006--085021,
  423. 2016.
  424. \newblock \doi{10.1088/0964-1726/25/8/085006}.
  425. \bibitem[Mardle et~al.(2021{\natexlab{b}})Mardle, Cerri, Suzuki, and
  426. El-Kharouf]{Loss_mardle2021examination}
  427. Peter Mardle, Isotta Cerri, Toshiyuki Suzuki, and Ahmad El-Kharouf.
  428. \newblock An examination of the catalyst layer contribution to the disparity
  429. between the nernst potential and open circuit potential in proton exchange
  430. membrane fuel cells.
  431. \newblock \emph{Catalysts}, 11\penalty0 (8):\penalty0 965, 2021{\natexlab{b}}.
  432. \bibitem[Jung and Ahmed(2010)]{Loss_jung2010dynamic}
  433. Jee-Hoon Jung and Shehab Ahmed.
  434. \newblock Dynamic model of pem fuel cell using real-time simulation techniques.
  435. \newblock \emph{Journal of Power Electronics}, 10\penalty0 (6):\penalty0
  436. 739--748, 2010.
  437. \bibitem[Mazzeo et~al.(2024)Mazzeo, Di~Napoli, and
  438. Carello]{Loss_mazzeo2024assessing}
  439. Francesco Mazzeo, Luca Di~Napoli, and Massimiliana Carello.
  440. \newblock Assessing open circuit voltage losses in pemfcs: A new methodological
  441. approach.
  442. \newblock \emph{Energies}, 17\penalty0 (11):\penalty0 2785, 2024.
  443. \bibitem[Li et~al.(2022)Li, Luo, Yang, and Ma]{Loss_li2022new}
  444. Jianwei Li, Lei Luo, Qingqing Yang, and Rui Ma.
  445. \newblock A new fuel cell degradation model indexed by proton exchange membrane
  446. thickness derived from polarization curve.
  447. \newblock \emph{IEEE Transactions on Transportation Electrification},
  448. 9\penalty0 (4):\penalty0 5061--5073, 2022.
  449. \bibitem[Jouin et~al.(2016)Jouin, Gouriveau, Hissel, Péra, and
  450. Zerhouni]{jouin2016}
  451. M.~Jouin, R.~Gouriveau, D.~Hissel, M.-C. Péra, and N.~Zerhouni.
  452. \newblock Degradations analysis and aging modeling for health assessment and
  453. prognostics of pemfc.
  454. \newblock \emph{Reliability Engineering \& System Safety}, 148:\penalty0
  455. 78--95, 2016.
  456. \newblock \doi{10.1016/j.ress.2015.12.003}.
  457. \bibitem[Springer et~al.(1991)Springer, Zawodzinski, and
  458. Gottesfeld]{springer1991}
  459. T.E. Springer, T.A. Zawodzinski, and S.~Gottesfeld.
  460. \newblock Polymer electrolyte fuel cell model.
  461. \newblock \emph{Journal of The Electrochemical Society}, 138\penalty0
  462. (8):\penalty0 2334--2342, 1991.
  463. \newblock \doi{10.1149/1.2085971}.
  464. \bibitem[Liu et~al.(2024)Liu, Zhao, Fu, Lin, Zhu, Wang, and Yuan]{liu2024study}
  465. Qi~Liu, Zijian Zhao, Weidong Fu, Zhe Lin, Zuchao Zhu, Haifeng Wang, and Yunchao
  466. Yuan.
  467. \newblock Study on the influence of the hydrogen--oxygen stoichiometric ratio
  468. on the power performance improvement in a large-scale pemfc stack.
  469. \newblock \emph{Journal of Power Sources}, 620:\penalty0 235279, 2024.
  470. \bibitem[Mohsin et~al.(2020)Mohsin, Raza, Mohsin-ul Mulk, Yousaf, and
  471. Hacker]{mohsin2020electrochemical}
  472. Munazza Mohsin, Rizwan Raza, M~Mohsin-ul Mulk, Abida Yousaf, and Viktor Hacker.
  473. \newblock Electrochemical characterization of polymer electrolyte membrane fuel
  474. cells and polarization curve analysis.
  475. \newblock \emph{International Journal of Hydrogen Energy}, 45\penalty0
  476. (45):\penalty0 24093--24107, 2020.
  477. \bibitem[Thiele et~al.(2024{\natexlab{b}})Thiele, Yang, Dirkes, Wick, and
  478. Pischinger]{Pol_thiele2024realistic}
  479. Paul Thiele, Yue Yang, Steffen Dirkes, Maximilian Wick, and Stefan Pischinger.
  480. \newblock Realistic accelerated stress tests for pem fuel cells: Test procedure
  481. development based on standardized automotive driving cycles.
  482. \newblock \emph{international journal of hydrogen energy}, 52:\penalty0
  483. 1065--1080, 2024{\natexlab{b}}.
  484. \bibitem[Pei et~al.(2008)Pei, Chang, and Tang]{pei2008}
  485. P.~Pei, Q.~Chang, and T.~Tang.
  486. \newblock A quick evaluating method for automotive fuel cell lifetime.
  487. \newblock \emph{International Journal of Hydrogen Energy}, 33\penalty0
  488. (14):\penalty0 3829--3836, 2008.
  489. \newblock ISSN 0360-3199.
  490. \newblock \doi{10.1016/j.ijhydene.2008.04.048}.
  491. \bibitem[Cherevko et~al.(2015)Cherevko, Keeley, Geiger, Zeradjanin, Hodnik,
  492. Kulyk, et~al.]{cherevko2015}
  493. S.~Cherevko, G.P. Keeley, S.~Geiger, A.R. Zeradjanin, N.~Hodnik, N.~Kulyk,
  494. et~al.
  495. \newblock Dissolution of platinum in the operational range of fuel cells.
  496. \newblock \emph{ChemElectroChem}, 2:\penalty0 1471--1479, 2015.
  497. \newblock \doi{10.1002/celc.201500207}.
  498. \bibitem[Luo et~al.(2010)Luo, Xie, Zou, Zhou, and Wang]{luo2010}
  499. G.~Luo, L.~Xie, Z.~Zou, Q.~Zhou, and J.-Y. Wang.
  500. \newblock Fermentative hydrogen production from cassava stillage by mixed
  501. anaerobic microflora: effects of temperature and ph.
  502. \newblock \emph{Applied Energy}, 87:\penalty0 3710--3717, 2010.
  503. \newblock \doi{10.1016/j.apenergy.2010.06.005}.
  504. \bibitem[Walln{\"o}fer-Ogris et~al.(2024)Walln{\"o}fer-Ogris, Poimer, K{\"o}ll,
  505. Macherhammer, and Trattner]{wallnofer2024main}
  506. Eva Walln{\"o}fer-Ogris, Florian Poimer, Rebekka K{\"o}ll, Marie-Gabrielle
  507. Macherhammer, and Alexander Trattner.
  508. \newblock Main degradation mechanisms of polymer electrolyte membrane fuel cell
  509. stacks--mechanisms, influencing factors, consequences, and mitigation
  510. strategies.
  511. \newblock \emph{International Journal of Hydrogen Energy}, 50:\penalty0
  512. 1159--1182, 2024.
  513. \bibitem[Takei et~al.(2016)Takei, Kakinuma, Kawashima, Tashiro, Watanabe, and
  514. Uchida]{takei2016}
  515. C.~Takei, K.~Kakinuma, K.~Kawashima, K.~Tashiro, M.~Watanabe, and M.~Uchida.
  516. \newblock Load cycle durability of a graphitized carbon black-supported
  517. platinum catalyst in polymer electrolyte fuel cell cathodes.
  518. \newblock \emph{Journal of Power Sources}, 324:\penalty0 729--737, 2016.
  519. \newblock \doi{10.1016/j.jpowsour.2016.05.117}.
  520. \bibitem[Pavli{\v{s}}i{\v{c}} et~al.(2018)Pavli{\v{s}}i{\v{c}},
  521. Jovanovi{\v{c}}, {\v{S}}elih, {\v{S}}ala, Hodnik, and
  522. Gaber{\v{s}}{\v{c}}ek]{pavlivsivc2018platinum}
  523. Andra{\v{z}} Pavli{\v{s}}i{\v{c}}, Primo{\v{z}} Jovanovi{\v{c}}, Vid~Simon
  524. {\v{S}}elih, Martin {\v{S}}ala, Nejc Hodnik, and Miran Gaber{\v{s}}{\v{c}}ek.
  525. \newblock Platinum dissolution and redeposition from pt/c fuel cell
  526. electrocatalyst at potential cycling.
  527. \newblock \emph{Journal of The Electrochemical Society}, 165\penalty0
  528. (6):\penalty0 F3161--F3165, 2018.
  529. \bibitem[Okonkwo et~al.(2021{\natexlab{b}})Okonkwo, Ige, Uzoma, Emori, Benamor,
  530. Abdullah, et~al.]{okonkwo2021platinum}
  531. Paul~C Okonkwo, Oladeji~O Ige, Paul~C Uzoma, Wilfred Emori, Abdelbaki Benamor,
  532. Aboubakr~M Abdullah, et~al.
  533. \newblock Platinum degradation mechanisms in proton exchange membrane fuel cell
  534. (pemfc) system: A review.
  535. \newblock \emph{International journal of hydrogen energy}, 46\penalty0
  536. (29):\penalty0 15850--15865, 2021{\natexlab{b}}.
  537. \bibitem[Park et~al.(2016)Park, Tokiwa, Kakinuma, Watanabe, and
  538. Uchida]{park2016effects}
  539. Young-Chul Park, Haruki Tokiwa, Katsuyoshi Kakinuma, Masahiro Watanabe, and
  540. Makoto Uchida.
  541. \newblock Effects of carbon supports on pt distribution, ionomer coverage and
  542. cathode performance for polymer electrolyte fuel cells.
  543. \newblock \emph{Journal of Power Sources}, 315:\penalty0 179--191, 2016.
  544. \bibitem[Zhao et~al.(2021)Zhao, Tu, and Chan]{zhao2021carbon}
  545. Junjie Zhao, Zhengkai Tu, and Siew~Hwa Chan.
  546. \newblock Carbon corrosion mechanism and mitigation strategies in a proton
  547. exchange membrane fuel cell (pemfc): A review.
  548. \newblock \emph{Journal of Power Sources}, 488:\penalty0 229434, 2021.
  549. \bibitem[Lin et~al.(2015)Lin, Cui, Shan, T{\'e}cher, Xiong, and
  550. Zhang]{lin2015investigating}
  551. R~Lin, X~Cui, J~Shan, L~T{\'e}cher, F~Xiong, and Q~Zhang.
  552. \newblock Investigating the effect of start-up and shut-down cycles on the
  553. performance of the proton exchange membrane fuel cell by segmented cell
  554. technology.
  555. \newblock \emph{International Journal of Hydrogen Energy}, 40\penalty0
  556. (43):\penalty0 14952--14962, 2015.
  557. \bibitem[Ohma et~al.(2008)Ohma, Yamamoto, and Shinohara]{ohma2008}
  558. A.~Ohma, S.~Yamamoto, and K.~Shinohara.
  559. \newblock Membrane degradation mechanism during open-circuit voltage hold test.
  560. \newblock \emph{Journal of Power Sources}, 182\penalty0 (1):\penalty0 39--47,
  561. 2008.
  562. \newblock \doi{10.1016/j.jpowsour.2008.03.031}.
  563. \bibitem[Matsutani et~al.(2010)Matsutani, Hayakawa, and Tada]{matsutani2010}
  564. K.~Matsutani, K.~Hayakawa, and T.~Tada.
  565. \newblock Effect of particle size of platinum and platinum-cobalt catalysts on
  566. stability against load cycling.
  567. \newblock \emph{Platinum Metals Review}, 54:\penalty0 223--232, 2010.
  568. \bibitem[Ren et~al.(2022)Ren, Pei, Chen, Zhang, Li, Song, Wang, and
  569. Wang]{Corr_ren2022corrosion}
  570. Peng Ren, Pucheng Pei, Dongfang Chen, Lu~Zhang, Yuehua Li, Xin Song, Mingkai
  571. Wang, and He~Wang.
  572. \newblock Corrosion of metallic bipolar plates accelerated by operating
  573. conditions in a simulated pem fuel cell cathode environment.
  574. \newblock \emph{Renewable Energy}, 194:\penalty0 1277--1287, 2022.
  575. \bibitem[Kumagai et~al.(2012)Kumagai, Myung, Ichikawa, Yashiro, and
  576. Katada]{Corr_kumagai2012high}
  577. Masanobu Kumagai, Seung-Taek Myung, Takuma Ichikawa, Hitoshi Yashiro, and
  578. Yasuyuki Katada.
  579. \newblock High voltage retainable ni-saving high nitrogen stainless steel
  580. bipolar plates for proton exchange membrane fuel cells: Phenomena and
  581. mechanism.
  582. \newblock \emph{Journal of Power Sources}, 202:\penalty0 92--99, 2012.
  583. \bibitem[Mele and Bozzini(2010)]{Corr_mele2010localised}
  584. Claudio Mele and Benedetto Bozzini.
  585. \newblock Localised corrosion processes of austenitic stainless steel bipolar
  586. plates for polymer electrolyte membrane fuel cells.
  587. \newblock \emph{Journal of Power Sources}, 195\penalty0 (11):\penalty0
  588. 3590--3596, 2010.
  589. \end{thebibliography}